Tutamen: A Next-Generation Secret-Storage Platform

Andy Sayler
University of Colorado, Boulder
andy.sayler@colorado.edu

Taylor Andrews
University of Colorado, Boulder
taylor.andrews-1@colorado.edu

Matt Monaco
University of Colorado, Boulder
matthew.monaco@colorado.edu

Dirk Grunwald

University of Colorado, Boulder

dirk.grunwald@colorado.edu

Abstract

The storage and management of secrets (encryption keys,
passwords, etc) are significant open problems in the age of
ephemeral, cloud-based computing infrastructure. How do
we store and control access to the secrets necessary to con-
figure and operate a range of modern technologies without
sacrificing security and privacy requirements or significantly
curtailing the desirable capabilities of our systems? To an-
swer this question, we propose Tutamen: a next-generation
secret-storage service. Tutamen offers a number of desirable
properties not present in existing secret-storage solutions.
These include the ability to operate across administrative do-
main boundaries and atop minimally trusted infrastructure.
Tutamen also supports access control based on contextual,
multi-factor, and alternate-band authentication parameters.
These properties have allowed us to leverage Tutamen to
support a variety of use cases not easily realizable using ex-
isting systems, including supporting full-disk encryption on
headless servers and providing fully-featured client-side en-
cryption for cloud-based file-storage services. In this paper,
we present an overview of the secret-storage challenge, Tu-
tamen’s design and architecture, the implementation of our
Tutamen prototype, and several of the applications we have
built atop Tutamen. We conclude that Tutamen effectively
eases the secret-storage burden and allows developers and
systems administrators to achieve previously unattainable
security-oriented goals while still supporting a wide range
of feature-oriented requirements.

Categories and Subject Descriptors K.6.5 [Management
of Computing & Info. Systems]: Security & Protection

Keywords Secret-storage, Key Management, SaaS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4525-5/16/10. .. $15.00.

DOI: https://dx.doi.org/10.1145/2987550.2987581

1. Introduction

How best to store and manage secrets — the bits of sensitive
data necessary to bootstrap or ensure the security of com-
puting systems and services — has always been a non-trivial
problem. As we continue to move toward computing and
storage platforms controlled by third parties, and embrace
modern trends toward ephemeral infrastructure, the secret-
storage problem only becomes more prevalent and critical to
solve.

Tutamen' is our attempt to solve the secret-storage prob-
lem in a manner that allows the user to adhere to a range of
security and privacy requirements without sacrificing func-
tionality in the process. Tutamen is a next-generation secret-
storage platform. It builds on our previous secret-storage ef-
forts [55] as well as various secret-storage systems available
today [25, 36, 59].

In this paper, we present the design, implementation, and
evaluation of Tutamen and its novel features. We also pro-
vide several practical demonstrations of how Tutamen can
be integrated with real world applications to offer desirable
features in a secure and easy-to-use manner. Tutamen’s pri-
mary selling points include:

1

e A modular authentication system designed to support
contextual, multi-factor, and alternate-band (e.g., SMS
text messages) authentication mechanisms.

e The ability to operate atop minimally trusted infrastruc-
ture by leveraging multiple storage and access control
providers to achieve redundancy and mitigate trust.

e The ability to share and manage secrets beyond the
boundaries of a single administrative domain.

1.1 The Need for Secret-Storage

Computing systems pervade every facet of our lives, from
the fitness trackers on our wrists, to our “smart” home ap-
pliances, to the server infrastructure required to support
the range of websites and services we interact with every
day. With this explosion of computing systems has come
an equally large explosion in the amount of data stored by

! Latin for “A means of protection or defense.”

https://dx.doi.org/10.1145/2987550.2987581

and about us. While some of this data is designed to be
public (e.g., the entries on Wikipedia), much of it is not,
requiring the enforcement of various privacy and security
guarantees with respect to its handling and storage. The ba-
sis of providing such guarantees relies on our ability to store
and selectively share secrets ranging from the keys used to
encrypt our data to the passwords used to protect our online
accounts. How best to store and manage these secrets is thus
a critical question, the answer to which forms the founda-
tion for all of computing’s higher level security and privacy
guarantees.

Beyond the need to bootstrap a variety of security guar-
antees, there are several other factors driving the need for
robust secret-storage solutions. On the systems administra-
tion front, the trend toward ephemeral infrastructure capa-
ble of rapidly scaling up or down is driving the adoption of
configuration management systems such as Puppet [44] or
Chef [42]. Such systems, however, do not tend to have suit-
able mechanisms for enforcing the security and privacy re-
quirements inherent to storing secrets. Nonetheless, config-
uration data often contains a variety of secrets such as SSH
keys, TLS/SSL keys, and the tokens or credentials necessary
to authenticate to external APIs and services.

Similarly, on the end user front, the need for suitable
secret-storage systems is being driven by a rapid expansion
of the number of sites and services to which users must
authenticate themselves and the growing expanse of digital
data and computing devices users wish to protect. Indeed,
the popularity of password management systems such as
LastPass [32] or 1Password [1] and the increasing trend
toward “on-by-default” device-encryption demonstrate the
importance of secret-storage and the applications it enables
to end users.

1.2 Motivating Examples

There are a number of motivating examples that highlight
the potential usefulness of a general purpose secure secret-
storage system:

Encrypted File Lockers: Cloud file locker services such as
Dropbox [17] or Google Drive [23] provide a popular
mechanism through which users may upload arbitrary
files in order to sync them across multiple devices or
to share them with other users. Such services, however,
require the user to place a high degree of trust in third
party storage providers [48]. To mitigate such trust, users
could employ various forms of client-side encryption, but
doing so introduces a number of challenging encryption-
key management problems that complicate the sharing
and syncing use cases inherent to such services. Cou-
pling client-side encryption systems with a distributed
secret storage system, however, has the potential to re-
duce the degree to which users must trust third parties
while also preserving straightforward syncing and shar-
ing paradigms.

Datacenter Disk Encryption: Full disk encryption systems
such as dm-crypt [9] are useful for protecting operating
systems and the data they store from unauthorized access
or manipulation. Such systems, however, traditionally re-
quire a human to manually enter a secret in order to boot
the system — a requirement that makes full disk encryp-
tion largely unusable in deployments where no human
can reasonably be expected to be physically present at
boot time (e.g., on a headless remote server or atop third
party cloud infrastructure). A secret-storage system ca-
pable of providing the necessary disk encryption key at
boot and extending, by proxy, the “human-in-the-loop”
boot requirement beyond mere physical presence (e.g.,
by sending a text message challenge to an administrator’s
cell phone) has the potential to expand the use of such en-
cryption systems even in modern remote deployments.

Password Management: As mentioned, the growth of the
number of passwords users must recall on a daily basis
forces users to either choose low quality passwords, to
reuse passwords across multiple services, or to place a
high degree of trust in a third party password manage-
ment services. A distributed secret storage service, how-
ever, has the potential to provide services similar to those
provided by third party password managers, but with a
lower degree of third party trust.

1.3 The Ideal Secret-Storage System

To address use cases such as these, users require a mecha-
nism for securely storing, managing, and exchanging a wide
range of secrets. Unlike standard configuration management
systems, or even specific secret-storage systems such as tra-
ditional password managers, general purpose secret-storage
presents a number of unique requirements. These include the
following capabilities:

e Store arbitrary secret data.

e Secure the manner in which secrets are stored.

e Enforce fine-grained access control requirements.
e Support a range of authentication sources/methods.
¢ Provide audit logs tracking secret-access history.

In response to these needs, a number of general pur-
pose secret-storage systems have recently been developed
by industry, including HashiCorp’s Vault [25], Lyft’s Con-
fidant [36], and Square’s Keywhiz [59]. These systems exist
to fulfill some or all of the requirements listed above. We
believe, however, that such systems are hindered by several
key limitations. First, they generally require at least one fully
trusted server as the basis of their security model, making
them unsuitable for operation atop untrusted infrastructure.
Second, they are designed for use within the boundaries of a
single administrative domain and require the user to trust the
administrators of that domain. Finally, they tend to lack sup-
port for use cases requiring autonomous or remote access to

secret material in a secure manner. These deficiencies give
rise to several additional secret-storage requirements:

® Avoidance of the need to place a high degree of trust in
any single system or administrative domain.

e Ability to support a range of secret-access use cases,
including use cases where automatic or remote access to
secrets is required.

It is toward these final two requirements that Tutamen at-
tempts to advance the state of the art over existing secret-
storage systems. In particular, Tutamen supports operational
modes where no single entity other than the client applica-
tion must be trusted. This allows users to leverage third party
secret-storage providers running Tutamen servers without
having to place high degrees of trust in any single provider.
Tutamen is also designed to scale beyond a single admin-
istrative domain, and does not require centralized control or
administration of each server in a Tutamen deployment. This
capability makes it possible to employ Tutamen in loosely
organized environments or across the Internet in general.
Furthermore, Tutamen provides support for a modular au-
thentication interface. This interface makes Tutamen suit-
able for use in situations where it is desirable to leverage ex-
ternal environmental information to automatically evaluate
the authenticity of a secret-request or where it is necessary
to keep a human in the authentication loop without actually
requiring that the human be physically present. The remain-
der of this paper discusses Tutamen’s design and how it can
be applied to solve issues such as those raised here.

2. The Tutamen Platform

The Tutamen secret-storage platform is designed to handle
the storage of arbitrary secret material from a range of ap-
plications. In this section, we present the Tutamen architec-
ture and our reference Tutamen server implementations. Tu-
tamen expands on Custos [55], our previous secret-storage
attempt. It aims to simplify some of the concepts Custos pro-
posed and to add better support for distributing secrets across
multiple servers.

2.1 Architecture

Tutamen has three discrete architectural components:

Access Control Servers (ACS): The systems responsible
for storing and enforcing secret access control require-
ments and for authenticating requests related to secrets
and access control data.

Storage Servers (SS): The systems responsible for storing
secrets (or parts of secrets).

Applications: The systems leveraging the Tutamen plat-
form to store and retrieve secrets.

The bulk of all Tutamen communication occurs between
an application and one or more of each type of server. Inter-
server communication is kept to a minimum to support scala-

bility as the number of servers grows. All communication in
Tutamen takes place via TLS [16] HTTPS connections, and
in some cases leverages mutual-TLS to provide both client
and server authentication. Both access control and storage
servers are designed to be used individually or in sets. For
example, an application may store its secrets on a single
storage server and delegate access control to a single access
control server, or the application may shard its secrets across
multiple storage servers and delegate access control to mul-
tiple access control servers, or any combination thereof.

2.1.1 Access Control Servers

Tutamen access control servers (ACS) are responsible for
authenticating Tutamen requests and for storing and enforc-
ing all Tutamen access control requirements. Access con-
trol servers expose a number of core data structures that re-
flect the manner in which they operate. Figure 1 shows these
structures.

] 1 |
1 1 |
Account Authenticator Permissions
f======"""" 1
1 N .
! # 1 ! Object Type 1
-—-- ' ! ebabaebabaate
't SR] | Auth Plugin 1 | ObjectID 1
| Cert ! - :
m Lo, y PluginData
5
Verifier ||| oo
-7 L ittty 1 : K
| ! [verfier |
: | Account ID | ' | Authenticator ID | | ! Verifier ID !
! 1
1 | Account ID | : : | Authenticator ID | : 1 eritier :
' 1
hy 1 Verifier D | 1
: | Account ID | N | Authenticator ID | ! ' m .
: ° ! : N | 1 : :
1 . i : 1 ! . '
I ; ! Verifier Set
1 :_ Account Set 1 : AuthenticatorSet 1| 4 1 Veritier set 1

Figure 1: Access Control Server Data Structures

In order to track and control access from specific actors,
the access control server uses per-actor accounts. These ac-
counts are generally designed to map to individual end users,
but they can be used to track any entity to which one wishes
to assign specific access control privileges. Accounts thus
form the basis of controlling and sharing access to secrets
via Tutamen. Associated with each account are one or more
clients. While accounts represent logically singular entities,
clients represent specific devices controlled by such entities.
Each account has one or more clients. For example, Jane
Coworker may have a single account with three clients: one
for her laptop, one for her desktop, and one for her phone.

Each client is associated with a single x509 [12] TLS
key/certificate-pair used to authenticate the client to the ac-
cess control server. Each access control server acts as a

Certificate Authority (CA) administering these certificates.
When a new client is created it generates a private key and
uses this key to generate an Certificate Signing Request
(CSR). This request is then sent to the access control server
where it awaits approval from an existing client in the ac-
count. If approved, the CSR is used to generate a signed cer-
tificate that is sent back to the client for use in future ACS
communication. To facilitate bootstrapping new accounts,
client CSRs are also generated and sent during new account
creation. These are automatically approved and associated
with the new account —i.e., the initial client is created in tan-
dem with a new account while all subsequent clients are ap-
proved by previously approved clients. Client certificates are
also designed to be revocable either by other clients within
an account, or by the administrator of a given Tutamen AC
server.” Account holders can use this functionality to transi-
tion from old clients to new ones, first using the old client
to approve the CSR for new client, and then using the new
client to revoke the certificate of the old client.

In addition to accounts, the Tutamen access control server
also uses authenticators. Authenticators are modular plugins
(similar to PAM [47]) used to implement contextual access
control requirements [26] such as limiting access to specific
times of day or to specific IP addresses. Authenticators can
also be used to implement multi-factor or alternate-band
authentication mechanisms such as confirming approval for
a specific request from a user via text message, or otherwise
interfacing with external services to gain approval.

Accounts and authenticators are combined via verifiers.
A verifier consists of a set of accounts and a set of authenti-
cators. To satisfy a verifier, a request must originate from a
client associated with one of the member accounts and must
satisfy all of the member authenticators. A verifier may con-
tain no authenticators, in which case authorization is granted
solely on the basis of accounts.

The final component of the Tutamen access control server
is the permissions group. Each permissions group corre-
sponds to a specific object (identified via the combination
of an object type and an object ID). A permissions group
contains one or more permissions (e.g., create, read, mod-
ify, delete,), each corresponding to a specific class of actions
that can be performed on the corresponding object. Each per-
mission is associated with a set of verifiers. To be granted a
given permission, a request must satisfy at least one of the
verifiers in this set.? In this manner, Tutamen allows the fine-
grained control of each permission for each object on the
basis of account membership, authenticator satisfaction, or a
combination of both.

2 While not yet fully implemented in our prototype, certificate revocation is
handled in the typical manner whereby the Tutamen AC Server maintains
and advertises a signed certificate revocation list that is consulted any time
a client certificate needs to be verified to confirm validity.

3 The combination of OR-ed lists of verifiers, each containing an AND-ed
list of authenticators allows the construction of AND/OR access control
trees using the Tutamen access control primitives.

2.1.2 Storage Servers

Tutamen storage servers (SS) are responsible for storing all
or part of each Tutamen secret. Figure 2 shows the core
storage server data structures.

Storage Server
| W
1, ::_U:
Collection ' AN £
1 e =N
1 ||g| ! ||gl
1 e ! e
1 Ilgl : |:ﬂl
Fmmm 1 19 oy
i Ak Uk 15
I SecretData | ! ot o
! o neh ':2'
————————— 1] 1
[headat ! i 3
I i, [|
L - L ACServerset 1 7 :ACServerSetl:_ I

Figure 2: Storage Server Data Structures

The top-level data structure employed by storage servers
is the collection. A collection represents a logical grouping
of one or more secrets (or parts of secrets). Associated with
each collection is a list of one or more access control servers
delegated with enforcing the access control requirements for
the collection. Access control granularity is thus set at the
per-collection, not per-secret level. A collection is also ca-
pable of storing user-provided metadata to aid in the map-
ping of collections to the objects for which they store secrets.
Each collection stores one or more secrets or secret shards.
These secrets consist of the secret data an application wishes
to store and any associated user-provided metadata.*

2.1.3 Access Control Protocol

Access control servers control access related to both internal
(i.e., access control server) and external (i.e., storage server)
objects by providing signed authorization tokens in response
to valid requests. Similar to previously proposed distributed
and federated access control systems [10, 35, 41], each au-
thorization token grants the bearer a specific permission re-
lated to a specific object. Unlike previous systems, however,
Tutamen is designed to avoid needing to trust any single ac-
cess control provider (see § 2.1.4). Figure 3 shows the basic
communication involved in the Tutamen access control pro-
cess.

Each access control server generates authorization to-
kens in response to a client sending an authorization request.
Each authorization request (and each corresponding token)
includes two claims binding it to a specific object: the ob-
ject type and the object ID. Each token request also contains

4How best to map secret data to collections is left up to each application.
This decision is primarily driven by the fact that access control is performed
on the per-collection level. Thus, if an application requires that a set of
secrets always have a common set of access control requirements, it is
efficient to group these secrets into a single collection. In cases where each
secret requires its own access control requirements (e.g., per-file encryption
keys), it is appropriate for the corresponding application to store only a
single secret per collection.

Storage Server

Application

Figure 3: Access Control Communication

a claim that binds it to a specific permission for the corre-
sponding object. Authorization requests are further bound
to the specific client making the request (authenticated via
mutual-TLS), and to an expiration time after which the to-
ken is no longer valid. Tutamen allows the client to request a
specific expiration time for each token, facilitating the reuse
of a single token to repeat a specific action on a given ob-
ject without needing to re-authenticate each time. The ac-
cess control server considers the requested expiration time
when deciding whether or not to approve an authentication
request, and may return an authorization valid for less time
than originally requested or deny a request for an overly long
duration altogether.

Upon receiving an authorization request from a client, the
access control server looks up the permission group for the
corresponding object (identified via the combination of ob-
ject type and object ID) and then loads the set of verifiers
corresponding to the requested permission. The server then
traverses each verifier in this set, checking for client mem-
bership in one of the accounts listed in the verifier and ex-
ecuting any authenticator modules required by the verifier
until it finds (or fails to find) a verifier that is satisfied by the
request. If the server is able to verify compliance with at least
one verifier, it grants the authorization request and returns a
signed authorization token that includes the object type, ob-
ject ID, granted permission, and expiration time. The bearer
of this token presents it to either the access control server or
a storage server in conjunction with it’s request to act on the
corresponding object.

Other than the bootstrapping operations and the token re-
quest operations themselves, all requests to either storage or
access control servers must be accompanied by a valid to-
ken. The receiving server validates this token using the pub-
lic signing key of the associated access control server. For
requests to the access control server itself, this key is avail-

able internally. For requests to storage servers, the storage
server downloads the signing key from each delegated ac-
cess control server. In this manner, access control servers
are responsible for granting and verifying authorization re-
quests, signing the corresponding tokens, and verifying to-
kens accompanying requests to perform actions on ACS ob-
jects (e.g., to create or modify verifiers or accounts). Storage
servers are responsible only for verifying tokens accompa-
nying requests to perform actions on storage objects (e.g., to
create a collection or read a secret).

2.1.4 Distributed Usage

Tutamen is designed to be used in both centralized and dis-
tributed use cases. The simplest Tutamen arrangement (e.g.,
as shown in Figure 3) involves leveraging a single Tutamen
access control server and a single storage server. In this ar-
rangement, a single storage server stores a complete copy of
each secret while a single access control server is charged
with enforcing access to these secrets. While this use case is
easy to deploy, it has two notable downsides. First, it forces
the user to place a high degree of trust in both the operator
of the access control server and the operator of the storage
server. Second, it lacks any form of redundancy. If either the
access control server or the storage server is unavailable, ap-
plications will be unable to retrieve any secrets.

A variety of systems have been proposed with the goal
of minimizing trust requirements for cloud infrastructure [6,
29, 31, 37, 62]. Tutamen applies similar “minimal-trust”
goals to the secret-storage problem by offering support for
sharding secret storage and access control duties across mul-
tiple servers. Operating Tutamen in a distributed manner is
largely a task that is pushed down to the application (or client
library). With the exception of offering the necessary prim-
itives to support such operation, both Tutamen storage and
access control servers are designed to be largely agnostic as
to whether they are being used in a centralized or a sharded
manner. This design has the benefit of avoiding server-side
scaling challenges, allowing the extra overhead required for
distributed operation to be supported by each application that
requires it. This design also helps avoid leaking unneces-
sary metadata to each Tutamen server, making it harder for
one server to identify (and thus attempt to attack) the other
servers involved in storing a single secret.

Figure 4 shows the basic layout of a distributed Tuta-
men setup. In such a setup, the Tutamen application first
shards its secret using a (k,n) threshold scheme [30, 58],
similar to previously proposed systems [6, 8, 15]. The appli-
cation chooses the value of n based on the number of storage
servers it wishes to use. The value of k is then chosen to con-
trol how many of the servers must be available to retrieve the
secret, or inversely, how many server operators must collude
to access a user’s secret. The application then pushes each
shard to the n storage servers. If the application is merely
concerned about storage redundancy, or about its ability to
trust a storage server operator, it can delegate the access con-

Storage Server A

N

Storage Server B

I

Storage Server C

T4 ke/?g

N

Secret

Application

Figure 4: Distributed Operation

trol for each secret shard to a single access control server. To
retrieve such a secret the application would request the nec-
essary token from the access control server and include it in
its request to each storage server for their respective shard
of the secret. When the application receives a response from
k of the storage servers, it is able to reconstruct the original
secret.

In most cases, however, the application will also wish to
protect itself against access control server trust and reliabil-
ity failures. This is accomplished via storage server support
for the specification of two pieces of metadata correspond-
ing to each stored collection: a set of AC servers approved to
provide access control tokens for the collection and a mini-
mum number of servers from which valid tokens must be re-
ceived. These parameters form the basis of a novel, yet sim-
ple, (k,n) threshold scheme for access control servers —e.g.,
a collection may delegate a list of n access control servers
from which an application must acquire at least k valid to-
kens to gain access. Thus, if the user does not wish to trust
a single access control server, they may require tokens from
at least k different AC servers to access the data stored in a
given collection. Likewise, if the application wishes to with-
stand the failure of one or more AC servers, it can specify n
possible AC servers where n > k.

To facilitate ease of management when operating in a
distributed fashion, Tutamen supports allowing applications
to request use of specific, randomly-generated UUIDs [34]
for each object at creation time. This allows clients to use
the same object ID across multiple servers, alleviating the
burden of maintaining a mapping between object IDs and the
servers to which they correspond. Using the same object IDs
across multiple servers also allows for more efficient token
management — e.g., if an application uses the same collection

ID on three separate storage servers, all of which delegate
a common set of access control servers, it is possible (and
desirable) for the application to use a single token on all
three servers.’

2.2 Usage Example

To illustrate the interaction of the various components of
the Tutamen platform, we present an example of the steps
taken by an application to store and then retrieve a secret
via Tutamen. In this example, we assume the application is
using three storage servers and two access control servers
as shown in Figure 4. We also assume the application has
already bootstrapped an account and an associated client.

Application SSA SSB SSC
1. Request <‘ac-serv’, ‘verif-create’>
AC Server
; <token>
verif-create
Tokens | roken, v_uuid, [acnts], [auths]>
2. Create — auid>
Verifier =

3.Request | <‘ac-serv’, ‘perm-create’>
=

AC Server

perm-create

Tokens | token, v_uuid, ‘col’, c_uuid>
[Soonen, V_Ud, oL

<token>

4. Frgate <status>
° Permissions
E 5.Request | <'stor-serv’, ‘col-create’>
Stor. Server <token
col-create
Tokens <token, c_uuid>
6. Create — uuid>
Collection ‘g =

7.Request | <’col’, ‘store-sec’, c_uuid>
= o e

Collection
<token>
store-sec
Tokens <token, c_uuid, s_uuid, secret shard>
8. Store - ouid>
Sec. Shard ¢ =

Figure 5: Storing a New Secret

Figure 5 shows the steps required to create a new col-
lection and store a secret within it. We assume the applica-
tion has already sharded the secret into three parts — one per
server.5 As shown, the client starts by setting up the nec-
essary access control structures (i.e., a new verifier and a

3 The ability to request specific object IDs does have a downside: it opens
Tutamen up to a possible denial-of-service (DoS) attack where an attacker
attempts to request the object IDs they know another application wishes to
use for themselves. Since each server may only use each object ID once, the
first application to request a given UUID gets it. Thus, if an adversary knew
which object IDs a given application planned to use, they could request
these object IDs on a given access control server for themselves, depriving
the original application of the ability to use those servers with that ID. At
worst, however, this attack posses an inconvenience to applications, since
an application is welcome to simply generate a new UUID for use with each
object it stores instead.

6 Omitted from this diagram is the process of creating verifiers and permis-
sions groups for the collection verifier itself. These objects are necessary
to control who can read, modify, or delete the corresponding verifier after
creation. The process for creating such objects is similar to the process of
creating the collection-related verifier and permissions. To avoid the infinite

corresponding set of collection permissions).” Once the AC
structures have been created, the client creates the storage
data structures: first a new collection, than a secret within
the collection. Prior to each operation, the client must also
request a token granting the necessary permission from the
AC server, meaning that about half the interactions in the
secret creation process are token requests.

Application SSA SSB SSC
<“col”, "read-sec”, c_uuid>
p— — =
Human
1. Requgst <SMS challenge>
Collection . s looi
- Confirm <SMS reply>
[} read-sec via SM§ ———= Py
£ Tokens
= <token>
<token, c_uuid, s_uuid>
Sec ZS.thaer?j(: <secret shard>

Figure 6: Retrieving an Existing Secret (w/ SMS Auth)

Figure 6 shows the steps required to retrieve an existing
secret. This diagram also assumes that the secret in ques-
tion has an SMS (i.e. text message) authenticator associated
with it, requiring a user to provide a response to an SMS
challenge in order to approve access to the secret. Compared
to the process of storing a new secret, retrieving a secret is
much simpler since it is not necessary to create the slew of
new access control objects required when creating a new col-
lection. Ignoring any round trips required by individual au-
thenticator modules (e.g., the SMS verification), secret re-
trieval required only a single round trip to each server: one
to each AC server to retrieve a token and one to each storage
server to retrieve each shard of the secret. In Tutamen, secret
retrieval is thus less expensive than secret storage. We fore-
see most secret-related workloads requiring many reads of a
single stored secret, so optimizing the system for reads over
writes seems appropriate.

2.3 Implementation

In order to demonstrate and test the Tutamen platform,
we have created reference implementations for the stor-
age server, access control server, and several client libraries.
Our Tutamen server implementation exposes a RESTful in-
terface [19] for both the access control and storage server

recursion of needing verifiers for each verifier, it is possible for a verifier to
be associated with a permissions group in which it is itself a member (i.e.,
a verifier can enforce its own access control specification).

7 Note that it is critical that the client creates the permission set correspond-
ing to the planned collection UUID prior to creating the collection itself.
Failure to do so risks allowing another actor to “hijack” the collection by
requesting the permission set corresponding to the new collection’s UUID
before the original requester. As with other Tutamen operations, the first
person to request an object corresponding to a given UUID gets it. Thus, a
client should only create a collection using a given UUID after they have
properly secured the corresponding permissions for the UUID in question
on each AC server they wish to utilize.

APIs. This interface accepts and responds using JSON [13]
messages over the HTTPS protocol. The full access control
server API specification and reference implementation are
available at [52]. Likewise, the storage server API specifi-
cation and implementation can be found at [54]. The pro-
totype servers are written in Python3 using the Flask web
framework [46]. Both servers are served via WSGI [18] us-
ing the Apache HTTP Server [4] for TLS termination and
client-certificate verification. Both Tutamen servers rely on
a shared pytutamen-server [50] Python library for the
implementation of their core logic. This library leverages
the Redis [45] key-value store for persistent storage. Our
Tutamen implementation adopts the JSON Web Signature
(JWS) [27] and JSON Web Token (JWT) [28] specifica-
tions for exchanging cryptographically authenticated tokens
between Tutamen applications, access control servers, and
storage servers. We leverage the pyjwt [43] library for JWS
and JWT support. These tokens are then attached to subse-
quent requests using a custom HTTP header field.

The access control servers expose a pluggable authentica-
tor interface through which end users and other developers
may add custom authentication functionality. This interface
is primarily designed to allow users to specify authentication
checks beyond the client certificate authentication automat-
ically performed on every request. As an example, we have
implemented an authenticator module that allows users to
approve Tutamen token requests via SMS text message us-
ing the Twilio [61] messaging platform. We also envision au-
thenticator modules for enforcing access control rules such
as only allowing requests during certain times of day or from
specific network addresses. Each authenticator plugin is pro-
vided with both a set of per-instance configuration data (e.g.,
to whom an SMS message gets sent for approval) and all of
the details of a specific token request (e.g., IDs and meta-
data associated with the requesting account and client, from
which information such as originating IP address or time of
day can be extracted).

In addition to the server and authenticator implementa-
tions, we have also created reference Tutamen client libraries
for both Python [49] and Go [39]. Using the Python client
library, we have created a Tutamen CLI application through
which users may directly store and retrieve secrets and con-
trol secret sharing and access control rules [53]. The CLI is
useful for managing Tutamen objects even in cases where
other applications (see Section 4) are set up to interface di-
rectly with the Tutamen platform. In this manner, it is not
necessary for every Tutamen application to implement all
Tutamen management functionality. Instead, an application
might leverage only the necessary Tutamen commands to
perform secret-storage and retrieval, leaving the task of man-
aging the access control of Tutamen-stored secrets to the CLI
or to another dedicated management application.

3. Security and Trust

One of Tutamen’s primary design goals is the ability to
support a wide range of security and trust requirements. In
this section, we present a basic overview of the Tutamen
security and trust models.

3.1 Security of Individual Servers

The security of each individual access control server rests on
several requirements. Failure to uphold these requirements
will result in the failure of any security guarantees provided
by the AC server.

Certificate Authority Role: Each access control server acts
as a CA delegated with issuing and verifying client cer-
tificates. Thus, each AC server must faithfully store its
CA keys in a secure manner, issue client certificates, and
verify the certificate presented by each client connection.

Token Issuance and Verification: Each access control server

is responsible for verifying the access control require-
ments bound to specific object/permission combinations,
issuing signed tokens attesting to such verification, and
verifying the signatures of the tokens it receives. Thus,
each AC server must faithfully store a private token sign-
ing key in a secure manner and verify both the access
control requirements governing specific token requests
and the signatures and claims on all incoming tokens.

The storage servers must uphold the following security
requirements. Failure to do so results in a failure of the
security of the storage server.

Token Verification: Each storage server must securely down-
load the public token signing key from each AC server
delegated with providing access control for a given stor-
age object. The storage server must then use these keys
to faithfully verify the signatures on all tokens it receives.
Assuming the token signature is valid, the storage server
must also faithfully enforce the claims asserted in a given
token; e.g., by only allowing actions granted by the per-
mission contained in the token on the object the token
identifies prior to the expiration time specified by the
token.

Secure Storage: Each storage server must take steps to
store user-provided secrets in a secure manner, releas-
ing them only in response to requests accompanied by
the requisite number of valid tokens required for such a
release.

Since the tokens the storage server must verify are pro-
vided by the AC servers, the security of the storage server
with respect to a given collection is dependent on the secu-
rity of any designated AC servers associated with said col-
lection. If these AC servers are insecure, the objects that del-
egate access to them will also be insecure.?

8 Since the security of Tutamen is derived from the security of the access
control server, it is reasonable for a single host to operate both access control

3.2 Security of Multiple Servers

Unlike existing secret management systems [25, 36, 59], the
Tutamen architecture is designed to support users outside
of a single administrative domain and is capable of remain-
ing secure even when individual storage or access control
servers fail to meet their security requirements. Such failures
may result from physical server compromise, software bugs,
malicious intent or incompetence on the part of the server
operator, or compelled failures[48].

To work around security failures of an individual server,
Tutamen applications can leverage Tutamen’s distributed op-
eration modes. In these modes, the security of the system
as a whole is diffused, no longer relying on the security
of any specific access control or storage server to keep an
application’s secrets secure. As described in Section 2.1.4,
each application can distribute both secret-storage and ac-
cess control delegations using n choose k schemes. In such
setups, the value of k represents the degree to which a Tu-
tamen application can withstand security failures of the as-
sociated AC and storage servers, while the difference be-
tween n and k dictates the degree to which an application can
withstand availability failures. For example, an application
that chooses to shard its secrets across six storage servers
where any three shards are sufficient to recreate the secret
(n =6, k = 3) will remain secure as long as no more than two
(k—1) of the storage servers fail to meet their security obli-
gations. Similarly, if each secret shard delegates six possible
AC servers, tokens from three of which are required to grant
secret access, the applications can withstand the failure of
two AC servers to uphold their security guarantees. In both
cases, the system can also withstand the loss of availability
of up to three servers (n — k) while continuing to operate.

3.3 Trust Model

Trust in Tutamen follows from the security models of both
individual Tutamen servers and of the distributed Tutamen
deployment architectures. If a Tutamen application is lever-
aging only a single storage and AC server, the application is
placing a high degree of trust in both servers (and by proxy,
the operator(s) of both servers). This level of trust may be
appropriate for some use cases (e.g., when a user is oper-
ating their own Tutamen’s servers), but is inappropriate in
many other cases (e.g., when using third party hosted Tu-
tamen servers). Fortunately, Tutamen allows applications to
avoid placing a high degree of trust in any single server by
leveraging multiple servers and picking k and n in a man-

and storage servers. Such a deployment requires no more trust than a host
who operates only an access control server. The Tutamen access control and
storage roles are mainly split into separate servers to allow for independent
scaling of each role and to promote separation of duties in the code base.
Collocating both server types on a single host is not generally detrimental
to the security of the system.

9 For example, being forced to turn over stored secrets in response to legal
or governmental pressure.

ner commensurate with the degree to which each server is
trusted.

When selecting Tutamen hosts for distributed Tutamen
operation, it is desirable to select hosts with geospatial,
geopolitical, and administrative diversity. Doing so reduces
the likelihood that multiple servers will be subject to the
same failure (e.g., a regional power outage), increases the
cost of collusion (e.g., by avoiding the use of multiple Tuta-
men hosting providers controlled by a single administrative
entity), and hinders compelled access (e.g., by locating se-
cret shards across national boundaries where no single gov-
ernment can compel access to all shards). Should a system
such as Tutamen ever become standardized, we also envision
the formation of a competing market of Tutamen providers
from which users may select individual hosts for their se-
crets. Such a market has the potential to align economic ben-
efits with security best practices by server providers [48, 51].
Although using Tutamen will always entail risks with re-
spect to trusted third parties, we believe these risks are lower
for Tutamen than for existing centralized secret storage plat-
forms. Furthermore, increasing the number of providers over
which secrets or access control duties are split serves to ar-
bitrarily reduce the degree of such risks.

4. Example Applications

Tutamen is designed to support a wide range of applications.
We have integrated our reference Tutamen design with a set
of common applications for the purpose of demonstrating
the value derived from using a secure storage system such as
Tutamen. These applications all leverage Tutamen’s flexibil-
ity to achieve functionality that would have been difficult or
impossible to achieve without using a system like Tutamen.

4.1 Block Device Encryption

Block device encryption systems are a popular means of
protecting the data stored on computing systems in the
event that the system is lost, stolen, or otherwise physically
compromised. Block-level encryption systems such as dm-
crypt [9] (generally coupled with the Linux Unified Key
Setup (LUKS) [20] container) or the QEMU [5] qcow?2 en-
cryption system provide methods for securing the data stored
on laptops, desktops, and VMs. Such systems traditionally
bootstrap security by requiring the user to enter a password
at boot-time to unlock a locally stored encryption key which
is then used to decrypt the block device in question. Unfor-
tunately, the “human-at-the-keyboard” security basis makes
such systems difficult or impossible to use atop headless
servers or in situations where no human can be expected
to be present at boot-time. We have leveraged Tutamen to
overcome this barrier.

To add Tutamen-support to LUKS/dm-crypt we have
integrated Tutamen with the LUKS/dm-crypt bootstrap-
ping process [38]. Our integration replaces the traditional
“human-at-the-keyboard” boot-time password prompt with

a request to a Tutamen storage server for the necessary de-
cryption secret (after first retrieving the necessary tokens
from the corresponding Tutamen AC server). We have also
integrated Tutamen support with QEMU to provide qcow?2
encryption keys when a VM boots [56]. Similar to the dm-
crypt setup, QEMU normally requires the user to provide the
encryption key via the QEMU console when a VM launches.
Our system replaces this process with Tutamen-based secret
retrieval. Using these setups, we’re able to boot servers and
VM images with encrypted disks without requiring a hu-
man to be physically present at the machine. In cases where
we still desire human approval of the boot process, we can
leverage our SMS authenticator module to get an on-demand
confirmation from a designated human as a prerequisite to
Tutamen releasing the correct key. This allows us to gain
the same level of human-in-the-loop security provided by
a typed passphrase, but without actually requiring a human
to go to the datacenter to type one in. In situations where
we don’t desire a human-in-the-loop at all, we envision au-
tomating the approval process via the use of time-of-day,
IP-source, or similar environmental factor authenticators.

4.2 Encrypted Cloud Storage

Cloud-based file storage systems such as Dropbox [17] are
extremely popular today. Unfortunately, these systems re-
quire users to trust the cloud provider with full access to
their (generally unencrypted) data. Users wishing to over-
come this deficiency can optionally encrypt all of their data
on the client before uploading it to the file locker provider,
but doing so does not generally interact well with such ser-
vices’ sharing and multi-device use cases, requiring users
to employ manual, out-of-band key exchange mechanisms
to share or sync their encrypted files. We don’t believe file
locker users should have to choose between easily syncing or
sharing their files and using encryption to protect their data.
Tutamen provides a solution to this problem by offering a se-
cure key-sharing mechanism. Instead of manually distribut-
ing or sharing encryption keys, the user can store their key
as a Tutamen secret and leverage Tutamen’s access control
features to share the secret with the accounts of their friends.
This entire process can even be automated such that when a
user shares a file via Dropbox, the corresponding encryption
key is automatically shared via Tutamen.

Toward this end, we have created FuseBox [3]: an alter-
nate Dropbox client that performs client-side encryption of
all Dropbox files, storing the corresponding encryption keys
on our reference Tutamen server. FuseBox achieves goals
similar to those achieved by [22], but without requiring out-
of-band key management. Similar to other file-system-level
encryption systems [7, 11, 24], FuseBox provides transpar-
ent file encryption to end users. In order to avoid the storage
space and security challenges presented by locally caching
all Dropbox data (i.e., the operation mode for the official
Dropbox client), FuseBox uses AES [14, 40] in a stream ci-
pher mode to transparently stream encrypted data to/from

Dropbox’s servers on demand (similar in purpose to systems
such as [60] and [64]). Since FuseBox leverages Tutamen to
store each per-file encryption key, FuseBox natively supports
Dropbox’s multi-device synchronization use case by allow-
ing a user to access and decrypt their Dropbox files from any
device on which they have setup the Tutamen client. Fuse-
Box also makes it simple to share an encrypted file via Drop-
box, share its encryption key via Tutamen, and achieve the
same level of functionality traditional Dropbox users have
without having to expose one’s data to Dropbox.!? In this
manner, we have used FuseBox to store and share encrypted
files with nearly the same ease with which one might use
the traditional unencrypted Dropbox client. By leveraging
Tutamen, FuseBox also gains the ability to remotely revoke
file access, e.g., in the case a device is lost or stolen, sim-
ilar to systems such as [21]. FuseBox, via Tutamen’s dis-
tributed operation mode, also avoids the sharing pitfalls as-
sociated many existing “secure cloud storage” providers [63]
by avoiding reliance on a single trusted party to facilitate
sharing operations.

5. Evaluation

We’ve evaluated Tutamen in a variety of scenarios using
the applications described in § 4. In this section, we discuss
both our existing Tutamen deployment and the performance
characteristics of our Tutamen prototype.

5.1 Deployment

We’ve deployed a group of Tutamen servers, each either
hosted locally or by an independent third party to gain
geospatial, geopolitical, and administrative diversity. Our
current Tutamen deployment includes three access control
and storage server pairs, across which we can shard both
secrets and access control duties:

France: Scaleway [57] C2S instance!!
North Virginia: AWS EC2 [2] c4.]arge instance'?
Colorado: Self-hosted instance!3

We’ve utilized our experimental Tutamen deployment to
manually store secrets via the Tutamen CLI, to store encryp-
tion keys for our FuseBox app, and to store encryption keys
for our LUKS and our QCOW?2 full-disk encryption sys-
tems. In each case, Tutamen has allowed us to realize use
cases not traditionally attainable such as the use of full disk
encryption on headless servers and the sharding of sensi-
tive files via Dropbox. This deployment demonstrates Tu-
tamen’s usefulness as an enabler of previously unattainable
functionality in a manner that also minimizes the need for

10 While the key sharing process in FuseBox is not yet directly linked to
Dropbox’s file sharing system, the Tutamen CLI can be used to quickly
share the encryption keys between users.

T Bare metal, 4-core, 8GB, Intel Atom C2550
12yM, 2-core, 3.75GB, Intel Xeon E5-2666
13 VM, 4-core, 4GB virtual, Intel Xeon E3-1245

third party trust. While Tutamen is still a prototype, our ex-
perience utilizing it thus far leads us to believe it provides
a well-designed architecture capable of supporting a wide
range of practical secret-storage applications.

5.2 Performance

All of the scenarios in which we’ve used Tutamen thus far
share the quality that they require a low rate of secret stor-
age/retrieval requests. For example, FuseBox requires only
a single secret store per file-create operation and a single se-
cret lookup per file-open operation. The full disk encryption
schemes are even less demanding, requiring only a single
lookup per system boot. Since our current deployment has
easily supported the needs of our existing Tutamen users and
applications, we have not yet had a need to optimize our Tu-
tamen deployment for performance. Nonetheless, we have
performed a number of performance measurements to bet-
ter understand the scaling and bottlenecks of the Tutamen
system and to target future performance enhancements.

Figure 7 shows the response vs request rates of single
access control and storage server deployment across a range
of increasingly powerful flavors of Amazon EC2 compute-
optimized instances. The curve for each instance tops out
once the server reaches its maximum processing capability.
Increasing the request rate beyond that point only serves
to increase the response latency, and eventually leads to
diminished performance due to server thrashing. Therefore,
we only graph through the first data point that shows a
decrease in response rate relative to previous data point,
representing the asymptotic performance limit of each EC2
flavor.

Figure 7a shows performance of a stream of “Get Autho-
rization Token” requests to a single Tutamen access control
server for a verifier that requires only account membership
(e.g., no authenticator modules). The maximum request rate
scales fairly linearly with the number of CPU cores, ranging
from around 30 RPS on a c4.large to around 130 RPS on
a c4.4xlarge. Processing authorization token requests tends
to be the most computationally difficult Tutamen operation:
the process requires verifying both cryptographic assertions
(e.g., a client certificate via the account ID) and each au-
thenticator module (where required).'* Figure 7b shows a
similar set of curves for a stream of request to fetch a se-
cret from a Tutamen storage server. As in the access control
case, these operations scale linearly with the number of CPU
cores, up until the point where they top out via the diminish-
ing return of a c4.4xlarge instance relative to a c2.2xlarge in-
stance. While we have not fully determined the exact cause
of this limit, we believe it is a combination of our Python
test client itself being only capable of generating 180 TLS

14 Processing authorizations can incur human-scale delays far in excess of
the computational limits, as in cases where an SMS authenticator requires
a human to receive and then respond to a text message. Tutamen clients
must thus account for the possibility of significant delays when requesting
tokens, generally via the use of asynchronous callbacks.

/«A.A ‘© c4.large
120 A cd.xlarge
& < ca.2xlarge
. ‘P/ A c4.4xlarge
= A
o 7 <>
o
g 8
v 80 4
5 £
a &
$ /
@ 60 bl
2 #
(%]
g 40 #
&
20 9/
o

0 20 40 60 80 100 120 140 160
Requests Per Second

(a) AC Server — Get Authorization Token

Responses Per Second

A @ c4.large
180 A.A AN c4.xlarge
LDy ‘<> < ca.2xlarge
160 A,QQ 4 c4.4xlarge
K&
140

6’.(5
120 f
100 ép

80 ‘é
I Q00
60 dg
40 9/
20 &

OO 20 40 60 80 100 120 140 160 180 200 220

Requests Per Second

(b) Storage Server — Fetch Secret

Figure 7: Scale Up Performance of Tutamen Servers on Amazon EC2 Gen4 Compute-Optimized Instances

requests per second and the fact that the Redis database starts
to reach the limit of the instance’s I/O performance around
this point, leading us to become I/O bound instead of CPU
bound. It should be noted that the request secret operation re-
quires significantly fewer computational resources than the
“get token” operation, leading to a performance range of 70
RPS to 180 RPS.

Figure 8a shows the breakdown of the relative time re-
quired to complete two of the most common Tutamen op-
erations: storing a new secret and retrieving a previously
stored secret. We profiled the amount of time the Tutamen
CLI application spent performing various parts of each of
these two Tutamen operations. In both operations, the bulk
of the server-related runtime is spent requesting and retriev-
ing the authorization tokens required to complete the asso-
ciated operations. In the secret creation case, five tokens are
required.!> In the secret read case, only a single token is re-
quired.'® The remainder of the server-related time is spent
either creating AC and storage data structures (e.g., veri-
fiers, collections, etc), or reading existing data structures.
The “other” time is spent reading the Tutamen config files,
loading the necessary client certificates, and dealing with the
overhead required to setup the TLS connections and interpret
the Python-based CLI.

Figure 8a shows the response vs request rate for a stan-
dard token request operation, two ‘“No-Op” access control
API operations (one that sends and verifies the client TLS

131e., one token to create the permissions for a new verifier, one token
to create a new verifier itself, one token to create permissions for a new
collection, one token to create the collection itself, and one token to store a
new secret within the collection.

161 e, to read a secret within the collection.

certificate and one that does not), and raw Apache HTTPS
and HTTP pageloads as served by an Amazon EC2 c4.]large
instance. As these curves show, token verification on such
an instance tops out around 30 RPS. The null AC API oper-
ation with client certificates tops out around 50 RPS, and the
null operation without client certificates tops out at about 75
RPS. Raw HTTPS tops out around 90 RPS. HTTP topped
out around 550 rps (curve truncated for viewability). Our
Tutamen prototype is thus primarily limited by the TLS
overhead required to serve the application and verify client
certificates. Token verification itself also incurs additional
computational requirements, including cryptographic sign-
ing operations. Finally, the data retrieval from the Redis
database and marshaling of data between Python and Redis
data types incurs some overhead.

While the current Tutamen performance has been suffi-
cient for our in-house needs, we have plans to optimize and
increase the performance of our Tutamen deployment. On
the server-side, Tutamen is designed to allow both horizontal
and vertical scaling, and we foresee large deployments over-
coming both the computational and I/O barriers of our cur-
rent deployment through a mix of balancing requests across
multiple backend instances (i.e., to overcome database and
I/O limits of single instance) and the use of more power-
ful processing capabilities (e.g., cryptographic accelerators).
We also have plans to streamline the cryptographic code
and the database abstraction layer to decrease Tutamen’s
computational and I/O requirements. On the client, we have
plans to take advantage of Tutamen’s support for long-lived
(e.g., minutes-to-hours vs seconds) tokens to decrease the
frequency with which clients must make requests to the Tu-
tamen AC server. Finally, we have plans to amend the Tuta-

SS Structs
ACS Structs

Tokens
SS Structs

Tokens

Relative Time

Store Secret Fetch Secret
Tutamen Operation

(a) Relative Time Spent Processing Store and Fetch Operations

—+ Get New Token
A.’A ¢ NoOp w/ Cert
-© NoOp w/o Cert

A <© Raw HTTPS

140

120 & 4\ Raw HTTP
'8 /
5 A
§ 100 /¢x
o s
£ 5 -0
9 45 © -0
wn
s ’&g
g 60 §
g 9—)6 X

40

il
20

0 20 40 60 80 100 120 140

Requests Per Second

(b) Relative Performance of Tutamen AC Server Operations

Figure 8: Timing and Performance Comparison of Tutamen Server Operation Sub-components

men protocol to allow for batching multiple token and stor-
age sever requests together to decrease the ratio of authen-
tication overhead to useful work possible in a single round
trip request. We believe a combination of these techniques
would allow us to significantly increase the performance of
our Tutamen deployment with only moderate additional de-
velopment effort.

6. Conclusion

How best to securely store secrets is a pressing issue in
today’s cloud-oriented, third-party-hosted, ephemeral com-
puting environments. This need has triggered the creation
of several secret-storage frameworks and systems. Unfortu-
nately, these existing systems prove deficient in at least three
key secret-storage capabilities: the ability to support opera-
tion outside of a single administrative domain, the ability to
operate atop untrusted infrastructure, and the ability to sup-
port a wide range of access control use cases.

We created Tutamen to demonstrate our concept for a
next-generation secret-storage system. Tutamen supports
client-controlled secret sharding to allow applications to
leverage minimally-trusted server infrastructure. Tutamen
also supports a flexible and modular authentication mecha-
nism that allows end users to specify complex access control
requirements. We’ve successfully coupled Tutamen with a
number of applications, including full disk encryption on
headless servers and client-side encrypted file sharing be-
tween multiple parties. These use cases would be difficult
(or at least burdensome) to realize without a system such as
Tutamen.

We plan to continue developing the Tutamen ecosystem.
On the server-side, we have plans to work toward increased

performance and to add support for additional authentica-
tor modules. While the Tutamen servers currently have basic
logging support, we also plan to expand this support, and to
explore interfacing Tutamen audit logs with intrusion detec-
tion systems in order to expose more actionable intelligence
to Tutamen authenticator modules. We are also considering
tying Tutamen’s logging infrastructure to a public audit sys-
tem similar to [33]. Such a system would help to further re-
duce the trust Tutamen users must place in individual Tuta-
men servers by exposing mechanisms by which a user could
reliably audit the behavior of such providers.

We have made all of the Tutamen source code available
via the previously referenced repositories. We encourage
others to experiment with our Tutamen prototype and ref-
erence implementation, or to integrate Tutamen with their
projects or applications. We hope that Tutamen (or simi-
lar distributed secret-storage systems) can help to ease the
secret-storage burden currently imposed on administrators,
developers, and end users by providing an alternative to
manually managing sensitive secrets in a manner that also
minimizes third party trust.

References

[1] AGILEBITS.
onepassword.

1Password. http://agilebits.com/

[2] AMAZON.coM, INC. Elastic Cloud Compute. http://aws.
amazon.com/ec2.

[3] ANDREWS, T. FuseBox source. https://github.com/
taylorjandrews/FuseBox, 2016.

[4] APACHE SOFTWARE FOUNDATION. Apache HTTP server
project. https://httpd.apache.org/.

[5] BELLARD, F., AND OTHERS. QEMU: Open source process
emulator. http://wiki.qemu.org/Main_Page.

[6] BESSANI, A., CORREIA, M., QUARESMA, B., ANDRE, F.,
AND SOUSA, P. DepSky: Dependable and secure storage in
a cloud-of-clouds. In Proceedings of the Sixth Conference on
Computer Systems (2011), pp. 31-46.

[7]1 BLAZE, M. A cryptographic file system for UNIX. Proceed-
ings of the First ACM conference on Computer and Commu-
nications Security (1993), 9-16.

[8] BLAZE, M. Oblivious key escrow. Information Hiding 1174
(1996).

[9] BROZ, M., AND OTHERS. dm-crypt. http://code.
google.com/p/cryptsetup/wiki/DMCrypt.

[10] CALERO, J. M. A., EDWARDS, N., KIRSCHNICK, J.,
WILCOCK, L., AND WRAY, M. Toward a multi-tenancy au-
thorization system for cloud services. IEEE Security & Pri-
vacy Magazine 8, 6 (November 2010), 48-55.

[11] CATTANEO, G., CATUOGNO, L., SORBO, A. D., AND PER-
SIANO, P. The design and implementation of a transparent
cryptographic file system for UNIX. In USENIX Annual Tech-
nical Conference (2001), pp. 199-212.

[12] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,
HOUSLEY, R., AND PoLK, W. RFC 5280: Internet X.509
public key infrastructure certificate and certificate revocation
list (CRL) profile. Tech. rep., Internet Engineering Task Force.

[13] CROCKFORD, D. Introducing JSON. http://www.json.
org.

[14] DAEMEN, J., AND RIUMEN, V. AES proposal: Rijndael.
Tech. rep., 1999.

[15] DENNING, D. E., AND BRANSTAD, D. K. A taxonomy for
key escrow encryption systems. Communications of the ACM
39, 3 (March 1996), 34-40.

[16] DIERKS, T., AND RESCORLA, E. RFC 5246: The transport
layer security (TLS) protocol - version 1.2. Tech. rep., Internet
Engineering Task Force, 2008.

[17] DROPBOX, INC. Dropbox. http://www.dropbox.com.

[18] EBY, P. PEP 3333 — Python web server gateway interface
v1.0.1. Tech. rep., Python Software Foundation, 2010.

[19] FIELDING, R. T. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University
of California Irvine, 2000.

[20] FRUHWIRTH, C. LUKS. https://code.google.com/p/
cryptsetup.

[21] GEAMBASU, R., JOHN, J. P., GRIBBLE, S. D., KOHNO, T.,
AND LEVY, H. M. Keypad: An auditing file system for theft-

prone devices. In Proceedings of EuroSys '11 (New York,
New York, USA, 2011), ACM Press, pp. 1-16.

[22] GOH, E.-J., SHACHAM, H., MODADUGU, N., AND BONEH,
D. SiRiUS: Securing remote untrusted storage. NDSS,
0121481 (2003).

[23] GOOGLE, INC. Drive. http://drive.google. com.

[24] HALCrROW, M. A. eCryptfs : An enterprise-class crypto-
graphic filesystem for Linux. In Ottawa Linux Symposium
(2005), pp. 201-218.

[25] HASHICORP. Vault: A tool for managing secrets. https:
//www.vaultproject.io/.

[26] HULSEBOSCH, R. J., SALDEN, A. H., BARGH, M. S.,
EBBEN, P. W. G., AND REITSMA, J. Context sensitive ac-
cess control. In Proceedings of the Tenth ACM symposium
on Access control Models and Technologies (New York, New
York, USA, 2005), ACM Press, p. 111.

[27] JONES, M., BRADLES, J., AND SAKIMURA, N. RFC 7515:
JSON web signature (JWS). Tech. rep., Internet Engineering
Task Force, May 2015.

[28] JONES, M., BRADLES, J., AND SAKIMURA, N. RFC 7519:
JSON web token (JWT). Tech. rep., Internet Engineering Task
Force, May 2015.

[29] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R.,
WANG, Q., AND Fu, K. Plutus: Scalable secure file shar-
ing on untrusted storage. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (2003), pp. 29—
42,

[30] KRAWCZYK, H. Secret sharing made short. In Advances in
Cryptology-CRYPTO’93, D. R. Stinson, Ed., vol. 773 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, July 1994, pp. 136-146.

[31] KuB1ATOWICZ, J., BINDEL, D., CHEN, Y., CZERWIN-
SKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND
ZHAO, B. Oceanstore: An architecture for global-scale per-
sistent storage. ACM SIGPLAN Notices 35, 11 (2000), 190-
201.

[32] LASTPASS. LastPass password manager.
lastpass.com.

[33] LAURIE, B., LANGLEY, A., AND KASPER, E. RFC 6962:
Certificate transparency. Tech. rep., Internet Engineering Task
Force, 2013.

[34] LEACH, P., MEALLING, M., AND SALZ, R. RFC 4122: A
universally unique identifier (UUID) URN namespace. Tech.
rep., Internet Engineering Task Force, 2005.

https://

[35] LEANDRO, M. A. P., NASCIMENTO, T. J., DOS SANTOS,
D. R., AND WESTPHALL, C. B. C. M. Multi-tenancy autho-
rization system with federated identity for cloud-based envi-
ronments using Shibboleth. ICN 2012, The Eleventh Interna-
tional Conference on Networks (2012), 88-93.

[36] LYFT. Confidant: Your secret keeper.
github.io/confidant/.

https://lyft.

[37] MAHAIJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI,
L., DAHLIN, M., AND WALFISH, M. Depot: Cloud storage

http://agilebits.com/onepassword
http://agilebits.com/onepassword
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
https://github.com/taylorjandrews/FuseBox
https://github.com/taylorjandrews/FuseBox
https://httpd.apache.org/
http://wiki.qemu.org/Main_Page
http://code.google.com/p/cryptsetup/wiki/DMCrypt
http://code.google.com/p/cryptsetup/wiki/DMCrypt
http://www.json.org
http://www.json.org
http://www.dropbox.com
https://code.google.com/p/cryptsetup
https://code.google.com/p/cryptsetup
http://drive.google.com
https://www.vaultproject.io/
https://www.vaultproject.io/
https://lastpass.com
https://lastpass.com
https://lyft.github.io/confidant/
https://lyft.github.io/confidant/

with minimal trust. ACM Transactions on Computer Systems
29, 4 (December 2011), 1-38.

[38] MONACO, M. Tutamen ask-password source. https://
github.com/asayler/tutamen-ask-password/, 2016.

[39] MONACO, M. Tutamen golang library source. https:
//github.com/asayler/tutamen-golang, 2016.

[40] NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY.
Announcing the advanced encryption standard (AES). Tech.
Rep. 197, U.S. Dept. of Commerce, 2001. Federal Informa-
tion Processing Standards Publication.

[41] NEUMAN, B. C., AND Ts’0, T. Kerberos: An authentica-
tion service for computer networks. IEEE Communications
Magazine 32,9 (1994), 33-38.

[42] OPSCODE. Chef. https://www.opscode.com/chef.

[43] PADILLA, J., AND LINDSAY, J. pyJWT: A Python imple-
mentation of RFC 7519. https://github.com/jpadilla/
pyjwt.

[44] PUPPET LABS. Puppet. http://puppetlabs.com.

[45] REDIS TEAM. Redis: Remote dictionary server. http:
//redis.io/.

[46] RONACHER, A. Flask: Web development one drop at a time.
http://flask.pocoo.org/.

[47] SAMAR, V. Unified login with pluggable authentication mod-
ules (PAM). In Proceedings of the 3rd ACM Conference
on Computer and Communications Security (New York, New
York, USA, 1996), ACM Press, pp. 1-10.

[48] SAYLER, A. Categorizing, analyzing, and managing third
party trust. In TPRC 44 (Washington, DC, September 2016),
SSRN.

[49] SAYLER, A. pytutamen client source. https://github.
com/asayler/tutamen-pytutamen, 2016.

[50] SAYLER, A. pytutamen server source. https://github.
com/asayler/tutamen-pytutamen_server, 2016.

[51] SAYLER, A. Securing Secrets and Managing Trust in Modern
Computing Applications. PhD thesis, University of Colorado
Boulder, April 2016.

[52] SAYLER, A. Tutamen access control API source. https:
//github.com/asayler/tutamen-api_accesscontrol,
2016.

[53] SAYLER, A. Tutamen command line interface source.

https://github.com/asayler/tutamen-tutamencli,
2016.

[54] SAYLER, A. Tutamen storage API source. https://
github.com/asayler/tutamen-api_storage/, 2016.

[55] SAYLER, A., AND GRUNWALD, D. Custos: Increasing secu-
rity with secret storage as a service. In 2014 Conference on
Timely Results in Operating Systems (TRIOS 14) (Broomfield,
CO, October 2014), USENIX Association.

[56] SAYLER, A., AND OTHERS. Tutamen-aware QEMU port
source. https://github.com/asayler/qemu, 2016.

[57] SCALEWAY. Deploy baremetal ssd cloud servers in seconds.
https://www.scaleway.com/.

[58] SHAMIR, A. How to share a secret. Communications of the
ACM 22, 11 (November 1979), 612-613.

[59] SQUARE. Keywhiz: A system for managing and distributing
secrets. https://square.github.io/keywhiz/.

[60] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A.,
GEAMBASU, R., AND SARDA, N. CleanOS: Limiting mo-
bile data exposure with idle eviction. In Proceedings of the
10th USENIX conference on Operating Systems Design and
Implementation (2012), pp. 77-91.

[61] TwiLIO. Twilio: A messaging, voice, video and authentica-
tion API for every application. https://www.twilio.com/.

[62] WILCOX-O’HEARN, Z., AND WARNER, B. Tahoe: the least-
authority filesystem. In Proceedings of the 4th ACM Interna-
tional Workshop on Storage Security and Survivability (New
York, New York, USA, 2008), ACM Press, pp. 21-26.

[63] WILSON, D., AND ATENIESE, G. To share or not to share
in client-side encrypted clouds. arXiv:1404.2697 (November
2014).

[64] XIA, Y., L1U, Y., TAN, C., MA, M., GUAN, H., ZANG, B.,
AND CHEN, H. TinMan: Eliminating confidential mobile data
exposure with security oriented offloading. Proceedings of the

Tenth European Conference on Computer Systems - EuroSys
'15 (2015), 1-16.

https://github.com/asayler/tutamen-ask-password/
https://github.com/asayler/tutamen-ask-password/
https://github.com/asayler/tutamen-golang
https://github.com/asayler/tutamen-golang
https://www.opscode.com/chef
https://github.com/jpadilla/pyjwt
https://github.com/jpadilla/pyjwt
http://puppetlabs.com
http://redis.io/
http://redis.io/
http://flask.pocoo.org/
https://github.com/asayler/tutamen-pytutamen
https://github.com/asayler/tutamen-pytutamen
https://github.com/asayler/tutamen-pytutamen_server
https://github.com/asayler/tutamen-pytutamen_server
https://github.com/asayler/tutamen-api_accesscontrol
https://github.com/asayler/tutamen-api_accesscontrol
https://github.com/asayler/tutamen-tutamencli
https://github.com/asayler/tutamen-api_storage/
https://github.com/asayler/tutamen-api_storage/
https://github.com/asayler/qemu
https://www.scaleway.com/
https://square.github.io/keywhiz/
https://www.twilio.com/

	Introduction
	The Need for Secret-Storage
	Motivating Examples
	The Ideal Secret-Storage System

	The Tutamen Platform
	Architecture
	Access Control Servers
	Storage Servers
	Access Control Protocol
	Distributed Usage

	Usage Example
	Implementation

	Security and Trust
	Security of Individual Servers
	Security of Multiple Servers
	Trust Model

	Example Applications
	Block Device Encryption
	Encrypted Cloud Storage

	Evaluation
	Deployment
	Performance

	Conclusion

