System and Data Security - A CS Systems Prelim

Andy Sayler

University of Colorado Boulder, Colorado
andy.sayler@colorado.edu

ABSTRACT

Security is a core component of modern computer systems.
From protecting our data to securing our communications,
security across the computing spectrum is fundamental to
the manner in which we leverage and trust computers. But
the security of modern computing systems has not come eas-
ily: it has been improved slowly over many years, sometimes
at the cost of painful lessons. Furthermore, the modern state
of the art in computing security still leaves much to be de-
sired. In this paper, I explore the development of the current
state of the art in computer security focusing on four core
components: cryptography, access control, file systems, and
usability. Computer security is an inherently large topic,
but these core topics provide a reasonable basis on which
a discussion the modern state of computer security can be
built. In particular, I seek to answer the question: “How
can we secure our systems and data in a robust, comprehen-
sive, and easy-to-use manner?”. This question in examined
from a historical perspective, as well as the perspective of a
modern user with modern use cases. This paper builds on
the background work completed in my Master’s Thesis [12],
further extending my analysis of the current state of the art
and hypothesizing on future extensions to this state.

1. INTRODUCTION

We have reached the age of ubiquitous computing. There
is not a facet of our lives that is not heavily integrated with
the vast computing networks we have built and continue to
expand. From the cell phones we use to communicate to
the web sites on which we mange our life’s savings to the
hard drives filled with our photos and personal documents,
computers are not only everywhere, but often at the heart
of our most intimate interactions. As such, the security of
our computing infrastructure is a foremost concern in mod-
ern computing system design. But what is the state of the
art in computing security? And how have we arrived at this
state? These are question I address in this paper through
the exploration and analysis of ten significant publications

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

CU CS Systems Prelim, Spring 2014.

Copyright held by author(s).

University of Colorado, Boulder

03/2014.

in the field. In particular, I break my analysis of the state of
the art in computer security into four related topics: cryp-
tography, access control, file storage, and usability. These
topics provide the underpinnings of the bulk of the modern
state of the art of computer security.

On the topic of cryptography (Section 2), I present the
basics of modern asymmetric cryptographic systems [3], ex-
tensions to these systems to accommodate the diversification
of trust [13], and the manner in which these core concepts
can be leverage in access control applications [1]. On the
topic of access control (Section 3), I present the basics of
modern access control models [11], the ways in which these
models can incorporate cryptography to avoid the need for
a trusted compute base [1], and the manner in which various
access control schemes have been applied to modern file sys-
tems [7]. On the topic of file systems (Section 4), I present
an effort to support file system distribution with minimal
trust [6], an overview of the security mechanism employed by
a range of modern file system [5], and the manners in which
modern file system implement access control [7]. Finally, on
the topic of usability (Section 5), I present an early effort to
standardize the basic system security primitives [10], tech-
niques for making security more robust and simpler for the
end user [2], and efforts to unify security primitives across
multiple administrative domains [8]. These ten papers are
by no means the complete body of prior art, but they do
elucidate the core concepts relevant to the question at the
core of this paper. References to other relevant works will
be provided where appropriate, but the bulk of my analyses
will focus on the papers listed above.

In addition to exploring the historic contributions of the
work mentioned above and the current state of the art they
represent, I also suggest possible future expansions of this
state. At it’s core, this involves looking at the existing an-
swers to the question question “How can we secure our sys-
tems and data in a robust, comprehensive, and easy-to-use
manner?”; as well as proposing potential new answers. This
hypothesizing is addressed with respect to the four core top-
ics mentioned above within each of the relevant sections and
is intended to inform potential future research paths and
projects.

2. CRYPTOGRAPHY

Cryptography is the basis of much of the modern com-
puter security landscape. This is largely because it represent
a security primitive that does not rely on trusting specific
people, platforms, or systems in order to securely function.
Instead, it requires that we place our trust in only one thing:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

the underlying math. This has led to the proliferation of
cryptography as the security primitive on which many other
security features are built.

2.1 History

Cryptography has a very long history: there is evidence
of societies employing basic cryptographic systems in order
to “secure” writing and messages dating back to thousands
of years BCE. These early forays into cryptography, how-
ever, lacked the sound grounding in mathematical theory
that makes cryptography so appealing today. I will thus
skip over the bulk of cryptographic history involving them.

Modern cryptography has its roots in the field of infor-
mation theory that begin to develop during WWII and ad-
vanced quickly in the post war years. Much of information
theory laid the basis for our ability to prove that a given
cryptographic algorithm requires a certain amount of effort
to crack in the absence of the “key”. This led to the rise of
mathematically grounded symmetric encryption algorithms,
designed for use with the growing availability of computers,
by the early 1970s.

Symmetric cryptography algorithms function on the prin-
ciple that a single “key” is used to both encrypt and decrypt
a message. This key must be securely stored, or if shared,
securely exchanged between parties. Anyone with the key
can decrypt the corresponding ciphertext the key was used
to create. The security of a symmetric encryption cipher
tends to be directly related to the length of the encryption
key: the longer the key, the more secure the data encrypted
with it is.

While symmetric cryptography algorithms are useful in
situations where a single actor will be both encrypting and
decrypting a piece of data (and thus can hold the required
key personally), they pose a major challenge it situations
where multiple parties wish to communicate securely. In
this situation, the parties must find a way to securely com-
municate the required symmetric key. In the absence of
cryptographic methods, the only way to securely exchange
a key while avoiding both eavesdroppers and interlopers is
to meet in person and exchange the key manually. The te-
diousness and lack of practicality of this task, especially in
modern digital communication systems where multiple ac-
tors may be continents apart, led researchers to seek a better
method for secure data exchange in the absence of an inher-
ently secure communication channel.

The major breakthrough in solving this challenge came in
1976 with Diffe and Hellman’s publication of “New Direc-
tions in Cryptography” [3]. Diffe and Hellman proposed a
system for asymmetric cryptography: a cryptography sys-
tem in which one key is used for encryption while a second
related key is used for decryption. When properly designed,
it is computationally unfeasible to derive one of the keys
in an asymmetric cryptography system form the other, al-
lowing a user to publish one of their keys for the public to
consume while keeping their other key private. A member
of the public can then use the user’s public key to encrypt
a message that only the holder of the private key will be
able to decrypt. If all members of the public maintain such
public/private key pairs, it becomes possible for any user to
send any other user a message that only the recipient an
read without requiring any form of secure communication
channel.

Asymmetric cryptography relies on the existence of “trap-

door” functions in order to operate. These functions can be
quickly solved in one direction, but are computationally dif-
ficult to reverse without a special piece of information (e.g.
the ’key’). Factoring large numbers is a classic example of a
trapdoor function (and the method on which many modern
public key encryption systems are based). Factoring large
numbers is computationally difficult in cases where some
piece of secret information (e.g. one of the factors) is not
known.

Diffie and Hellman proposed a potential implementation
of a public key cryptography system, although the first prac-
tical public key crypto system came a few years latter with
the invention of the RSA [9] algorithm. In addition to pub-
lic/private key systems, Diffie and Hellman also proposed a
system for joint key generation where two parties can nego-
tiate a secrete key across an insecure connection. Like asym-
metric cryptography, such a system can be used to bootstrap
secure communications across an insecure connection by al-
lowing two parties to derive a secret key that can then be
used to facilitate further secret communication using a sym-
metric encryption algorithm.

Diffie and Hellman also introduce the concept that asym-
metric encryption can be used to build the two additional
core cryptographic primitives we have come to rely upon:
cryptographic verification and cryptographic authentication.
Cryptographic verification (also called a cryptographic “sig-
nature”) is essentially the reverse of asymmetric encryption:
instead of a member of the public using another party’s pub-
lic key to encrypt a message that only the target party can
read, the target party uses their private key to encrypt a
message that the public can then decrypt using the target’s
public key. Since only the target has access to the private
key, and is thus capable of generating such a message, the
target can “prove” that a given message comes from them
and that it has not been altered in transit. Just as asym-
metric encryption gives rise to cryptographically secure sig-
natures, cryptographically secure signatures can give rise to
cryptographically secure authentication. If a user generates
a signed message saying “I am John” and sends it to an au-
thentication server, the server can verify that the message
signature is valid by checking it using John’s public key, and
thus authenticating John in the process. The server need
only have a list of public keys for each user. It can then
leverage the assertion that only the indented user has ac-
cess to the corresponding private key for each of the server’s
public keys, and is thus the only one capable of generating
a signed message on the user’s behalf, as the basis of user
authentication.

Beyond the rise of public key cryptography, one of the
other major cryptographic breakthroughs of the last fifty
years was the invention of cryptographically secure secret
sharing schemes. In particular, Adi Shamir (the ’S’ form
“RSA”) proposed a practical and robust secret sharing scheme
in his 1979 paper “How to share a secret” [13]. In this work,
Shamir lays out the basics of what has come to be known
as Shamir Secret Sharing: a method for splitting a piece of
information up into two or more pieces in a manner such
that holders of any subset of the pieces cannot infer any in-
formation about the pieces they do not hold or the original
information block as a whole. Shamir Secret Sharing allows
a user to divide a piece of D data into N pieces of which K
or more pieces can be used to recompute the original value
of D. A user with fewer than K pieces, however, has no

more information about the value of D than a user with no
pieces. This system provides a highly useful method for dis-
tributing information amongst multiple parties or systems
in situations where no single party or system can be fully
trusted.

Shamir Secret Sharing, unlike all known asymmetric en-
cryption techniques, does not rely on computational com-
plexity as the basis of its security. Instead, it is fundamen-
tally secure based on information theory principles. Thus,
unlike computationally secure systems such as RSA, Shamir
Secret Sharing can not be broken regardless of the amount
of computational power one posses. Shamir Secret Sharing
functions on the basis of defining a polynomial of degree
(K-1) over a finite field with the D data encoded as the first
order-zero term. N points are then selected from this poly-
nomial and distributed to the participants. Since K points
(but no fewer) will uniquely identify the original polynomial,
and thus allow the derivation of D, K users must combine
their pieces in order to re-compute D.

Shamir Secret Sharing (and related systems) are useful in
a wide range of situations where one needs to distribute trust
across multiple entities. In particular, secret sharing tech-
niques are leveraged in some cryptographically-based access
control systems like that described in [4]. Such systems will
be discussed further in Section 3.

2.2 State of the Art

Both symmetric and asymmetric encryption systems have
a place in the modern security landscape: symmetric sys-
tems for their performance and resistance to cryptanalysis
and asymmetric systems for their avoidance of the key ex-
change problem. Often symmetric and asymmetric cryptog-
raphy are used together, each system playing to its strength.
Symmetric systems are good at quickly and securely encryp-
tion data, making them appropriate for the core of an en-
cryption system. Symmetric ciphers, however, suffer from a
lack of natively secure method for exchanging the required
encryption key. This is where asymmetric cryptography and
related secure key exchange systems come in handy. These
systems provide the basis for securely exchanging data over
insecure channels and they can be thus used to bootstrap
symmetric encryption systems by facilitating the secure ex-
change of a symmetric encryption key which can then be
used to encrypt the underlying data. Such systems are com-
mon in many modern protocols like SSL, TLS, PGP, and
SSH.

Modern symmetric encryption ciphers like AES (Rijndael),
Twofish, or Camellia are well-established, fast, and secure
methods for encrypting data. Symmetric encryption sys-
tems are the preferred means of encrypting files, hard disks,
and other large chunks of data due to their speed and rela-
tive simplicity of implementation. They are also useful for
encrypting streams of data in communication protocols like
TLS/SSL or SSH. They tend to be well understood, and are
generally considered highly secure (at least the well vetted
ones). The strength of a given symmetric cipher is directly
related to the length of the associated encryption key. Com-
mon key lengths generally considered secure today include
128-bit keys, 256-bit keys, 384-bit keys, and 512-bit keys.

Modern asymmetric encryption systems include systems
like RSA, ElGamal, ECDH, ECDSA, or ECIES. These sys-
tems are all built atop various one-way trapdoor functions.
RSA is based on prime-factorization functions, ElGamal is

based on discrete logarithm functions, and ECDH, ECDSA,
and ECIES are all based on various elliptic curve functions.
It is often useful to mix cipher suites relying on different
trapdoor functions as a hedge against an efficient solution
to any of the underlying function families being discovered,
thus rendering the encryption using such a family obsolete.
Within a given family the security of an asymmetric cipher
is related to the length of the keys in a key pair: longer
keys are more secure. Standard key lengths for asymmetric
keys depend of the family of functions be used. In prime-
factorization based system like RSA or discreet-log systems
like ElGamal, key lengths of 1024-bits, 2048-bits, and 4096-
bits are all common (with 2048 considered to be best practice
for general data and 4096 considered to be best practice for
highly sensitive data). Elliptic curve based systems tend to
use shorter keys: recommended sizes range from 160-bits to
512-bits (similar to symmetric key lengths).

2.3 Future Extensions

While both symmetric and asymmetric cryptography are
largely settled art at this point, there are a variety of chal-
lenges yet to be solved in the cryptography research realm.
One of the constant threats to the settled cryptographic art
is that of a major breakthrough in solving the currently
“hard” problems used as the basis for a variety of trapdoor
functions. One of the proposed methods for solving existing
trapdoor functions more quickly than currently possible is
to use quantum computing approaches. While no practical
attacks on existing cryptographic systems using quantum
approaches are known, there are certainly researchers work-
ing on such approaches. There is also work being done in
the opposite direction to try to leverage quantum techniques
to build cryptographic systems that would be effectively un-
breakable due to the underlying quantum limitations of our
universe. Such techniques often involve leveraging the quan-
tum “observer” effect to detect eavesdropping on a commu-
nication channel, allowing the users to regenerate keys until
they complete the negotiation unobserved. Again, however,
there are no known practical implementations of quantum
cryptography at this time.

One of the other major challenges to cryptography today
is the reliance on good sources of randomness to generate the
secure cryptographic keys used in both symmetric and asym-
metric encryption systems. Finding and harnessing good
randomness is challenging since it depends on having access
to an sufficient amount of entropy. Traditionally, comput-
ing systems leverage user interactions (e.g. mouse move-
ments, key strokes, network interrupts, etc) as the sources
for OS-maintained entropy pools. The rise of cloud com-
puting systems, however, posses challenges to using such
sources: in the cloud, systems often run in highly homo-
geneous environments with few “random” user interactions.
Coming up with secure ways to derive entropy and provide
good randomness is such environments is a topic of active
study. The importance of randomness to modern computing
systems requires us to come up with secure ways of gather-
ing and distributing entropy. Potential solutions range from
building secure Entropy-as-a-Service systems that gather en-
tropy from sources where it is abundant and redistribute it
to source where it is scarce to using entropy-generating hard-
ware that relies on unpredictable physical phenomena (e.g.
atomic decay events) to derive randomness.

Finally, while strong cryptographic systems are well un-

derstood, there are a myriad of situations where crypto-
graphic best practices are ignored or where cryptographic
systems are unpractical to use, leading to security failings.
Many of these issues can be linked to usability challenges
within cryptographic systems: if a system is difficult to use
or challenging to deploy, it will often go unused or wind
up misconfigured and insecure. One of the major usabil-
ity challenges present in all current cryptography systems is
the management of private/secret keys. Keeping such keys
secure while also enabling their use across a range of mod-
ern multi-user, multi-device, ephemeral resource use cases is
extremely challenging and lacks a standard solution at this
time. My previous master’s thesis work, Custos [12], pro-
poses a potential solution to the secret management problem
and remains an area of active research. Other approaches
to alleviating usability issues are discussed in Section 5.

3. ACCESS CONTROL

Over the years, we have developed a range of access con-
trol techniques. All of these techniques share a common
goal: controlling access to a specific system, resource, or
piece of data. Must access control models have two key com-
ponents: authentication and authorization. Authentication
is used to establish the identity of an actor. Authorization
then leverages this identification as the basis of granting or
denying specific permissions to the actor. This section will
discuss historic access control techniques, the current state
of the access control art, and potential future access control
additions.

3.1 History

Computer-based access control systems have been with
us since the earliest multi-user (e.g. time sharing) operating
systems became popular in the 1970s and 1980s. Early ac-
cess control systems were primarily focused around the Unix

model of access control: users, groups, and read/write/execute

file-level permissions. Authentication in these early systems
was generally limited to username:password combinations,
the mechanisms of which were hard coded into the login
program. Each user was a member of one or more groups
and each file had a owner and group. The three file permis-
sions, read, write, and execute, were granted on the basis of
a user’s relationship to a given file: either the user was the
file owner, the user was a member of the file group, or the
user was neither of these things. This model is fairly flexi-
ble, and continues to be used today as the core access con-
trol model in many Unix-like operating systems (e.g. BSD,
Linux, OSX, etc).

Access Control List (ACL) based schemes gained promi-
nence in 1990s and were popularized by the Windows NT
family of operating systems. ACLs extend the permission
model beyond the basic Unix file permissions to include a
wider range of file (e.g. read, write, delete, create, etc) and
system-level (e.g. shutdown, connect to network, etc) per-
missions. ACLs are associated with specific system objects
(e.g. files, folders, OS subsystems, etc) and map a user or
group to a list of permission that user or group possess. They
generalize the Unix access model to accommodate a wider
range of permissions and mappings between permissions and
actors. ACL-based systems have been integrated into many
modern Unix-like operating systems as an optional extension
beyond the tradition Unix permissioning scheme.

Exiting access control schemes are often grouped into one

of two classes: Mandatory Access Control (MAC) systems
or Discretionary Access Control (DAC) Systems. While the
lines between these two approaches are occasionally blurred,
the basic difference between the two lies in which actors
within a system have the ability to grant/extend permis-
sions to other actors. In MAC system, all permissions are
set by the system administrator and users have no ability to
change these permissions themselves or transfer permissions
to other users. DAC systems, in contrast, give users the
ability to set their own permissions on objects they own or
create, and to transfer these permissions to other users. A
MAC-based system can be thought of as similar to a DAC
system where the system administrator owns all files and
never transfer this ownership to any other user. Traditional
Unix access control systems as well ACL access control sys-
tems can generally be used in either MAC or DAC based
systems. MAC systems are generally preferred in high secu-
rity environments where the centralized management models
they offer lead to tighter control over data. DAC systems
are more common in general purpose systems where the ex-
tra flexibility they offer reduces the administrative burden.
Most Unix-like systems are DAC systems by design, but ex-
tensions (e.g. SELinux) can be used to add MAC properties
to these systems.

Many of the early access control systems pose a host of
manageability challenges. How do you coordinate the per-
missions of thousands of users across millions of objects?
How do you revoke permissions for a defunct user? Or add
a new user? To cope with many of these challenges Sandhu,
et. al. proposed the concept of Role-Based Access Control
Models in their 1996 paper by the same name [11]. Role-
Based Access Control (RBAC) inserts an additional layer
of indirection between users and permissions. In an RBAC
system, users are assigned to one or more roles. Each role is
then assigned one or more permissions. This model simpli-
fies management by separating permission assignment from
specific users. RBAC permissions are assigned assigned on
the basis of specific positions or duties within an organiza-
tion and mapped to specific roles. Users are then assigned to
these roles on the basis of whether or not they hold a specific
positions or are required to perform a specific duty. Thus,
adding or removing users does not require any modifica-
tion to permission mappings, only role mappings. Likewise,
adding or removing permissions does not require modifying
user mappings, only role mappings. [11] describe 4 classes
of RBAC systems: RBAC), (the base model), RBAC, (the
base model with the addition of role hierarchies and in-
heritance), RBAC> (the base model with the addition of
constraints), and RBAC3 (the combination of RBAC, and
RBACS,).

The primary limitation of all of the access control mod-
els mentioned thus far is their reliance on a trusted arbiter
for enforcement: generally this trusted arbiter is the oper-
ating system or some other underlying program in charge
of enforcing the access control system. This means that the
security of any of these access control systems is only as
good as the security of the system enforcing them (e.g. the
security of the OS). Thus, if the underlying OS or program
is compromised, the access control system falls apart. Like-
wise, anyone in control of the underlying OS or program
(e.g. an administrator) automatically gains full control over
the access control system. This is an acceptable limitations
in many situations, especially those based on a centrally

managed system with existing physical security and admin-
istrative safeguards in place. But in distributed systems or
other systems where physical and management control in
not guaranteed (e.g. the cloud), a more robust system that
lacks this “trusted arbiter” requirement is desirable.

To overcome the need for a trusted enforcement mech-
anism in access control systems, researchers have turned
to cryptographically-based access control systems. As men-
tioned in Section 2, cryptographic-based system require no
trust in external systems, only in the underlying math. Sa-
haie, Waters, et. al. propose several cryptographically-
based access control systems in their 2006 paper [4] and its
2007 follow-up [1]. These two systems are based on the con-
cept of Attribute-Based Encryption (ABE) schemes. ABE
schemes allow a user to encrypt a document in a manner such
that the access control rules associated with the document
are part of the encryption process itself. Thus, in order to
decrypt/access a document, a user must satisfy one or more
cryptographically guaranteed access control attributes. [4]
allows user to encrypt documents that can only be decrypted
by users possessing specific attribute polices encoded in their
keys. [1] extended this concept to allow documents to be
encrypted with a full access control policy tree embedded
in the encryption processed file directly allowing only users
who’s private keys meet a generalized set of requirements to
access the documents. Both these systems allow the con-
struction of access control systems that do not require any
trusted arbiter to regulate access to objects. Instead, the
regulation in enforced by the underlying encryption backed
by the associated math.

3.2 State of the Art

Today, the state of the are in access control differs widely
based on the system and application. As mentioned, many
Linux and Unix-like systems still use basic Unix access con-
trol primitives largely unchanged over the last 20 to 30
years. This is largely due to the fact that these systems
are “good enough” for many single-user and small group en-
vironments and the administrative burden of shifting to a
more advanced system is simply not worth the effort. Most
Linux systems today do support extended file ACLs, as well
as system-level ACLs exposed by systems like PolicyKit.
These systems allow users to move beyond the limitations
of a pure Unix-like, file-centric access control scheme. That
said, many users never need to deal with these more ad-
vanced systems for the majority of day-to-day use cases.

Windows-based operating systems make extensive use of
ACL-based access control schemes. While, these schemes are
useful in the Windows-domain environments used by most
large corporations, many home and leisure Windows users
never have any need to interact with file or system level
ACLs. Modern Windows systems combine RBAC concepts
with ACL concepts by allowing administrators to define role-
based “groups” that can then be used with specific permis-
sion assignments. Most stand-alone access control systems
bundled with specific applications (e.g. content management
systems, etc) also take cues from both RBAC and ACL ac-
cess control models. While these system do help to reduce
the management burden of large systems, they are often
prone to misconfiguration, the occurrences of which lead to
many of the security breaches that happen today.

Cryptographically-based access control schemes remain largely

an academic novelty at this point. I am aware of no com-

mercially or generally deployed software that leverage ABE
or similar cryptographically-based access control schemes as
the basis of their access control models. None the less, the
need for robust access control schemes that can be used
across a range of untrusted infrastructure is only going to in-
crease in our modern cloud-based computing world. Thus,
it is possible that we will see an increase in the practical
deployment of these systems in the near future.

Outside of permission-side access control models, there
have also been advances in the authentication side of ac-
cess control. Most modern access control systems support
authorization primitives far more complex than basic user-
name:password combinations. Several such systems are dis-
cussed in more detail in Section 5. None the less, the vast
majority of user authorization systems are still password
based. To overcome the well known security deficiencies
of user passwords, multi-factor authentication schemes are
staring to gain prominence on high value target systems (e.g.
email accounts, bank accounts), but such systems are most
often optional and are not in wide use amongst the general
population.

3.3 Future Extensions

One of the major limitations to most access control sys-
tem today is their lack of global name space or rules: access
control rules are currently scoped to the system or admin-
istrative domain in which they are created, with little to
no support for wider, globally-enforceable rules. This cre-
ates a host of challenges implementing robust access control
schemes across our modern multi-user, multi-device, loosely
managed environments. As a basic example, traditional
Unix file permissions are useless when used on portable me-
dia like USB flash drives since user IDs, groups, and per-
missions are all scoped to the local machine and do not ex-
tend to other machines on which you might wish to access
the portable media. Cryptographically-based access control
schemes like ABE are a step toward solving this problem
by removing the need for a trusted host system. Still, such
systems still pose many of the same challenges other cryp-
tographic systems have: namely how to manage and control
access to the underlying private keys in a secure yet globally
accessible manner. In addition, a variety of system-specific
distributed access control schemes will be discussed in the
context of the file systems to which they apply in Section 4.
But few of these systems are generalized enough for use on a
multi-application scale. Providing secure, manageable, and
usable access control systems that can operate on a global
scale across a variety of distributed devices largely remains
an open problem, and finding a solution will continue to in-
crease in importance as our use cases continue to demand
an increasingly global and distributed perspective.

Beyond globally usable access control schemes, most ac-
cess control system today have a fairly clear delineation of
authentication and authorization. While this division makes
since from a separation of duties standpoint and fits well into
tradition access control schemes, it can also limit the expres-
siveness of an access control system. For example, strictly
separating authentication and authorization makes it diffi-
cult to set up access control rules that depend on more than
a single user’s identity (e.g. time dependent, etc) and also
make it difficult to operate in situations where the concept
of a single “user” is not well defined (e.g. anonymous sys-
tems). In [12], T explored relaxing the separation between

authentication and authorization to build a more expressive
access control scheme. Schemes like ABE also blur the lines
between authentication and authorization in the name of
increased expressiveness. How to strike a correct balance
between a proper separation of authentication and autho-
rization duties and a high level of expressiveness remains
an open problem. Building expressive systems that are also
easy to reason about, manage, and maintain is a relevant
topic to future access control advances.

4. FILE SYSTEMS

Much of the work we perform on computers today is highly
data-centric. As such, the protection and control of our
data is a core goal within the realm of computer security.
The previous two sections explored ways to protect data
cryptographically and via various generalized access control
models. In this section, I'll look at data protection schemes
built into storage systems directly.

4.1 History

Early storage and file system technologies often simply ne-
glected security, lacking robust encryption and access con-
trol primitives. As mentioned in Section 3, the rise of multi-
user operating systems like Unix mandated the creation of
basic file-system access control schemes. Thus we gained
the previously mentioned Unix file access control and per-
missioning scheme as part of the virtual file system (VFS)
abstraction inherent in all legacy and modern Unix-like op-
erating systems. As previously stated, however, this system
has a number of limitations: it supports only a single, basic
access control model (owner, group, R/W/E permissions), it
requires a trusted system for enforcement, and it is strongly
coupled to a local system. Systems like NFS attempt to ex-
tend Unix file security semantics beyond the local machine
allowing remote sharing of files, but even these systems are
limited to singular administrative domains and trusted sys-
tems.

The Windows NT file system access control model (im-
plemented via the NTFS file system) extends the flexibility
of the traditional Unix model by adding support for more
expressive ACLs. These both allow the control of additional
permissions (e.g. delete, create directory, etc) as well as
more expressive user to permission mappings beyond the ba-
sic owner/group/other Unix model. Furthermore, the Win-
dows NT model has the ability to delegate user authentica-
tion to a local Domain Controller (DC) capable of centrally
managing all users from a single location. This expands the
ability to control file access beyond the users associated with
the local system to the users associated with an entire ad-
ministrative domain. Still, this system still has many of the
same limitations as the Unix model: the requirement for a
trusted system for enforcement and the tight coupling to the
local administrative domain.

The rise of the Internet as a reliable and high speed sys-
tem for connecting multiple machines across the world as
well as the move toward cloud computing models where com-
putational resources are outsourced to dedicated providers
has increased the demand for secure storage systems capa-
ble of spanning multiple systems and domains. In order
to overcome the limitations posed by traditional file sys-
tem security models and accommodate modern multi-user,
multi-system use cases, researchers have proposed a number
of newer systems. These systems try to address one or more

of the limitations mentioned above. Some of them employ
cryptographic security models to overcome the need for a
trusted enforcement system. Others are designed to extend
access control semantics beyond the local machine to large
networks or even the global internet. Still others explore the
use of novel access control models more expressive then Unix
permissions or Windows NT ACLs. Many system combine
more than one of these approaches to build a fully featured
next generation secure storage system.

Kher and Kim provide a survey of the various approaches
to securing distributed storage systems in their 2005 pa-
per “Securing Distributed Storage: Challenges, Techniques,
and Systems” [5]. In it, they discuss the security models
of various storage systems, sorting such systems into ba-
sic networked file systems, single-user cryptographic file sys-
tems, and multi-user cryptographic file systems. As previ-
ously mentioned, basic networked file systems rely on trusted
systems and administrators for the enforcement of secu-
rity rules. Examples of such systems include the Sun Net-
work File System (NFS), the Andrew File Systems (AFS),
and the Common Internet File System (CIFS/SMB). All
of these systems are designed for use within local admin-
istrative domains and do not scale well to global, loosely-
coupled distributed systems. To deal with the scalability
issues, researchers have built system like SF'S (discussed be-
low) or OceanStore which aim to reduce the administra-
tive burden of large scale distributed file systems. All of
these systems, however, rely on some degree of system or
administrator trust. In order to accommodate situations
where users do not wish to place trust on the underlying
system or remote servers, Kher and Kim discuss a handful
of cryptographically-secure file systems. The best of these
systems offer end-to-end cryptography, meaning that data
is encrypted and decrypted on the client side and the server
never has access to the unencrypted data. Systems like the
Cryptographic File Systems (CFS) provide basic single-user
end-to-end file encryption. While end-to-end encryption is
a powerful security model for enabling secure storage atop
untrusted systems, it does pose challenges with respect to
multi-user, multi-device use cases since it generally requires
that all clients have access to private cryptographic creden-
tials in order to effectively read or write files. In order to
support both end-to-end encryption and multi-user scenar-
ios, researchers have proposed multi-user cryptographic stor-
age systems like SiRiUS, Cephus, or Plutus.

Miltchev, et. al. provide a survey of access control tech-
niques across a variety of distributed file systems in their
2008 paper “Decentralized Access Control in Distributed
File Systems” [7]. They present a framework for analyzing
the suitability of various distributed file systems for mod-
ern multi-user, multi-domain use cases by analyzing five un-
derlying file system qualities: authentication, authorization,
granularity, delegation, and revocation. Miltchev, et. al.
suggest that any secure large scale file system must suc-
cessfully address the functionality of all five of these fac-
tors across multiple administrative domains in order to be
an effective multi-user, multi-domain file system. In ad-
dition to the systems discussed in [5], Miltchev, et. al.
also discuss systems like Truffles, Bayou, WebF'S, CapaF'S,
DisCFS, WebDAVA, and Fileteller as examples of systems
that attempt to support multi-domain, multi-user, globally-
accessible use cases. Miltchev, et. al. reach the following
conclusions regrading successful secure multi-user, multi-

domain file systems: the use of public-key cryptography
for user authentication is an effective way to support au-
tonomous delegation, capability-based access control sys-
tems tend to lack support for auditing and accountability,
ACL-based access control systems pose scalability challenges
when used across administrative domains, and revocation
and user autonomy are often at odds.

A good example of a modern multi-user distributed file
system with many of the desirable qualities discussed pre-
viously is SFS, described by Mazieres, et. al. in their 1999
paper “Separating Key Management form File System Secu-
rity” [6]. In this paper, they describe the design and imple-
mentation of the SFS file system. SFS is unique in that it
is designed for global-scale file system operations and lever-
ages basic cryptographic security while avoiding the need
for tightly specified key management infrastructure. Such
infrastructure often adds a large administrative burden, lim-
iting file system expansion beyond a single administrative
domain on the basis of management complexity alone. SF'S
achieves its goals through the use of self-certifying file names:
file names that encode the public key of remote a file server
into the file path itself. Self-certifying path names allow
SFS clients to bootstrap a cryptographically secure commu-
nication channel to any remote server without requiring any
large scale key-management infrastructure. SFS leverages
authentication servers to verify users on the basis of asym-
metric key pairs and uses security agents to help reduce the
usability burden this might otherwise impose (see Section 5
for more details on agents). SFS is built atop the NFS dis-
tributed file system, and thus uses an a Unix-based access
control model to regulate file and directory access. SFS’s
cryptographic capabilities help it to overcome the need for
a fully trusted compute base for the enforcement of its se-
curity model. Extensions to SFS like GSFS help further
move SFS beyond the limitations of a single administrative
domain to accommodate a more general global file system.
SFS does not however provide full end-to-end encryption, so
it still requires some trust of the underlying infrastructure
and administration.

4.2 State of the Art

As mentioned in Section 3, the basic Unix and Windows
NT file system security models are by far the most widely de-
ployed file system security approaches. Where distributed
file systems are concerned, NFS, AFS, and CIFS are the
de facto standards. As discussed, all of these systems lack
support for end-to-end cryptographic security, global access,
and inter-domain sharing. They are the standard not be-
cause of their rich, modern feature sets (which they lack),
but simply because they are adequate for many of the stan-
dard single user or single domain use cases still deployed
today. Replacing these systems would often be a larger bur-
den than it is worth. These are not ideal systems, but they
are “good enough” for many users, and thus remain the stan-
dard.

In many instances, the traditional systems listed above
are not so much threatened by the more advanced research
systems previously discussed (e.g. SFS, Bayou, Plutus, etc)
but by the growing proliferation of cloud-based distributed
storage service like Dropbox or Google Drive. Today, when
users wishes to share files across administrative boundaries
(or even within these boundaries) or wishes to sync files
across multiple devises, they often do so using a dedicated

file sharing/syncing service based in the cloud. These ser-
vices tend to have highly polished user interfaces and over-
come many of the single-domain, single-system restrictions
of more traditional approaches like NF'S or CIFS. While pol-
ished and easy to use, these systems do require placing full
trust in the cloud providers who operate them. While most
users seem willing to trade trust and privacy for the features
these service provide, there is a growing understanding (a la
Edward Snowden and our friends at the National Security
Agency) of the privacy risk offloading data to the cloud in-
volves. While these risks don’t seem to deter a majority of
users (at least this time), they do make such service strictly
off limits within certain high security and regulatory realms.
To date, none of the major cloud storage services offer access
to end-to-end encryption schemes that would allow users to
store their data in the cloud while also minimizing their
need to trust a given cloud service provider. The reasons
behind the lack of a cryptographically secure cloud service
seems to be a combination of lack of user demand, usability
challenges, and the conflicts of interested between privacy-
minded user and data-mining based cloud business models.

While cryptographically secure distributed or cloud-based
file systems are not in wide spread use, there are a growing
number of cryptographically secure local file systems worth
mentioning. On Linux, systems like eCryptfs provide an
overlay file system capable of performing transparent en-
cryption on a subset of the system’s file tree. Alternatively,
systems like dm-crypt provide block-level encryption suit-
able for full-disk encryption schemes. Using a local disk en-
cryption system helps to guard against data loss or compro-
mise in the event that a storage device falls into an advisories
hands. Such systems are particularly useful on mobile com-
puting devices like laptops or tablets since these devices tend
to be more prone to theft or loss. Systems like BitLocker on
Windows or FileVault on OSX can be used to provide simi-
lar features. Even most modern SSD-based hard disks tend
to offer on-board encryption features to help protect them
in the event that they are lost. All of these systems tend
to be fairly user friendly and/or transparent. They often tie
encryption keys to a user’s login password, allowing a user to
encrypt their system without requiring any more effort than
they would exert during a normal password-based login pro-
cess. This approach, however, does mean that such systems
are not useful for protecting files that can be stolen while
a user is actively logged into a system (e.g. via a malicious
program). They only provide protection when a system is
powered off, locked, or similarly put into a non-active state.

4.3 Future Extensions

There is a lot of work to be done in order to make crypto-
graphically secure, distributed file systems a day to day real-
ity for most users. While theoretical research systems exist
that can provide many benefits over the current status quo,
many of these systems introduce usability challenges that
make them unsuitable for the average user. As mentioned in
previous sections, many of these usability challenges can be
directly linked to the problems that arise managing private
cryptographic keys across our modern multi-device, multi-
user use cases. Usability is the major hurdle preventing
cryptographically strong distributed storage systems form
entering the mainstream. Providing systems that can offer
cryptographic security while also achieving the kind of in-
tuitive usability provided by service like Dropbox or Google

Drive needs to be a major area of research if we wish for such
systems to provide a benefit other than supporting tenure-
track progress within the ivory tower.

The rise of cloud-based services is only going to increase
the demand for secure storage systems that can support
multi-user, multi-device, multi-domain user cases while also
minimizing the need to trust cloud providers. Providing such
a system will open up the growing range of cloud service to
an even wider audience, and will help to keep users in control
of their data even as we increasingly outsource our comput-
ing resources. Custos [12] was one attempt at building a
component of such a system. Other attempts and further
research are required if we’re serious about closing the cloud
vs trust divide.

S. USABILITY

There’s little use in having highly secure systems that are
impossible to manage/use. Unfortunately, manageability
and ease of use is a major challenge on many secure systems
in use today. Multiple research efforts have shown that one
of the most common causes of security failures is misconfig-
uration. Likewise, there have been multiple studies showing
the unwillingness of users to adopt new security practices
if such practices increase the usage burden of a system. In
this section, I'll discuss how secure systems can be made
more usable across developer, administrative, and end-user
use cases.

5.1 History

The usability of security has been a concern since the early
days of thinking about computer security. Unfortunately, it
hasn’t always been a priority. There are multiple facets of
usability with respect to security. In particular, it is useful to
analyze the usability of a system from the frames of reference
of various stake holders. There are three core stake hold-
ers who are affected by the usability of a security scheme:
developers, administrators, and end-users. Developers care
about the programmatic usability of a system: e.g. how eas-
ily can a security scheme be integrated with other systems?
Administrators care about the management usability of a
system: e.g. How easily can a security scheme be installed,
configured, and managed? Finally end-users care about the
consumer usability of a system: which is really to say, they’d
generally prefer not to have to care about a secure system at
all. In all these cases, usability is of the utmost importance.
Security is generally a secondary usage goal: it’s not the
primary feature a system is trying to implement. Instead,
it’s a means to an end. Thus, if security systems become
too burdensome, they will simply be ignored or removed.
Security that gets in the way of the user instead of naturally
accommodating the user is security that will go unused.

As mentioned in previous sections, early computer secu-
rity implementations often involved hard coding security
primitives directly into the program that used them. Un-
fortunately, this practice quickly leads to developer usabil-
ity challenges, tightly coupling security policy with security
mechanism and making it difficult to update one without
changing the other. To deal with issues like this, Vipin

Samar invented the Pluggable Authentication Modules (PAM)

system and presented it in his 1996 paper [10]. The PAM
system was designed to provide a flexible interface for user
authentication on Unix (and later Linux) systems. It strips
the login program of its internal authentication mechanism

code, instead providing it with an interface into an extensible
authentication plugin stack. Like the GSS-API system that
compliments it, PAM is designed to provide a generic secu-
rity mechanism (in this case, a generic authentication mech-
anism) so that individual programs do not have to hard-code
their authentication algorithms. In this manner, PAM sys-
tems ease developer usability by freeing programmers from
the burden of having to code an authentication stack di-
rectly into their applications. This also avoids the need to
constantly upgrade applications simply to support new au-
thentication mechanisms. Furthermore, PAM expands the
administrator’s ability to control how authentication mech-
anisms are used within each application. It allows admin-
istrators to control exactly which authentication primitives
get used by each application on a system, even allowing them
to specific multiple authentication primitives where required
(e.g. to provide multi factor authentication). The manner
in which PAM does this is fairly straightforward, ideally
promoting administrative usability in addition to developer
usability.

Beyond the developer and administrative usability of au-
thentication systems lies a whole suite of usability challenges
when it comes to having users managing passwords and au-
thentication credentials (e.g. keys) for a range of services.
Users are often asked to remember a wide range of passwords
for a variety of services. When using cryptographically based
authentication schemes (e.g. public/private keys/certificates),
users must also keep track of all the necessary private keys
so that they can use them when required. Thus, the rather
mundane task of password or certificate based authentica-
tion leads to a large end-user burden, encouraging the cre-
ation of simple, repetitive passwords or discouraging the use
of cryptographic certificates. Cox, et. al present a potential
solution to these kinds of problems in the 2002 paper on “Se-
curity in Plan 9” [2]. Cox, et. al. propose using a security
“agent” to manage the complexity of maintaining multiple
authentication secrets (e.g. passwords or keys) on behalf of a
user. They build such an agent for the Plan 9 operating sys-
tem called Factotum. The idea of having a dedicated “agent”
manage credentials on the user’s behalf predates Factotum
(i.e. the SSH agent), but Factotum generalizes the concept
to make it an application-agnostic credential manager. A
security agent like Factotum locally stores and tracks all cre-
dentials for a given user. These credentials are encrypted,
generally using the user’s login password, ensuring that the
agent has access to them when the user is logged in, but
that they remain secure when the user is offline. When the
user attempts to authenticate to a service that requires cre-
dentials, Factotum looks them up and provides them on the
user’s behalf. If Factotum lacks the necessary credentials, it
prompts the user for them, and then stores them for future
use. In this manner, Factotum can make authentication to
a range of disparate services a largely seamless task for the
user, greatly easing end-user usability and encouraging the
use of strong password or cryptographic authentication tech-
niques that would otherwise be too burdensome to leverage.

Morgan, et. al. present an alternate approach to manag-
ing the authentication across a range of service in their 2004
paper “Federated Security: The Shibboleth Approach” [8].
Where as agent-based system like Factotum deal with the
multitude of user credentials on the client side, Shibboleth
attempts to deal with this problem from the server side.
Shibboleth is a from of advanced Single-Sign-On (SSO) sys-

tem that allows users to use a single set of credentials to
authenticate to a range of Shibboleth-backed sites. In con-
trast to more traditionally SSO systems, Shibboleth offers
support for federations: the ability to share identify infor-
mation across administrative domains. In Shibboleth, each
users is associated with an Identity provider (IdP) server.
This server maintains identity and authentication informa-
tion about a user. When a user wishes to authenticate to a
third party website, that website looks up and contacts the
user’s IdP server. The user’s session is passed to the IdP
server where user completes the authentication process, af-
ter which they are passed back to the original website with
a token (i.e. assertion) stating whether or not their authen-
tication attempt was successful and what access attributes
they should be granted. The original site then grants ac-
cess based on the validity of this token and the associated
attributes it provides. Shibboleth leverages the Security As-
sertion Markup Language (SAML) on the back-end as a
standardize format for passing security assertions between
an IdP and a third party site. Since Shibboleth only requires
that a user maintain and provide a single set of authentica-
tion credentials regardless of the number of disparate sites
or services they need to access, it can greatly reduce the
user’s security burden and encourage the use of more secure
(albeit harder to remember) credentials. It also eases devel-
oper usability by relieving services of the need to build their
own authentication systems (similar to PAM) and adminis-
trative usability by providing a centralized point at which
all user attributes and permissions can be managed.

5.2 State of the Art

Today, a wide range of security management systems de-
signed to increase various usability aspects are in common
use. PAM is still the de facto standard for managing au-
thentication on Unix and Linux systems. Today, PAM sup-
ports a wide range of authentication primitives, from pass-
words, to multi-factor devices, to hardware-based Smart-
Cards. PAM support authentication for a range of Unix and
Linux subsystems including login, SSH, FTP, etc. Windows
provides similar pluggable authentication interfaces. All of
these systems encourage the rapid development of authen-
tication primitives without unnecessarily tying them to the
associated program leveraging them. They also expose a
lot of administrative flexibility when it comes to configuring
authentication across a range of services.

While the concept of an OS-managed general security
agent such as Factotum hasn’t really gone mainstream, spe-
cific systems make use of agents for credential management,
namely SSH and GnuPG. Password mangers, however, have
become increasingly mainstream. These system specialize
in the storage of passwords and other secrets, and while
they often lack the fully integrated nature of an authenti-
cation agent, they do tend to support rudimentary auto-
completion of user secrets where required. Since the bulk
of day-today user authentication today takes place on the
web, most password managers are browser based. In many
ways, the browser in the modern “OS” for many user ac-
tivities. In that manner, browser-based password managers
such as LastPass or 1Password fulfill many of the same goals
as Factotum: they ease the end-user’s security burden and
encourage better security practices in the process. Most se-
curity experts recommend the use of a password manager
for all users today. The fact that many users use the same

password across multiple sites and choose essentially weak
passwords is a major barrier to internet security. Password
managers help counter this weakness by focusing all of the
user’s memorization efforts in a single, strong master pass-
word while encourage the use of long, random passwords
between the password management software and the third
part web site or service.

The Shibboleth system is deployed and in use across a
range of academic and Internet2 infrastructure. Similar fed-
erated identity protocols such as OpenlD or Persona have
become common across the wider internet. Large cloud

providers like Google or Facebook often act as identify providers

for users who already have accounts with them, allowing
these users to authenticate to other websites without creat-
ing additional accounts. Identity provision is quickly becom-
ing a core role of large cloud service providers, and options
like “Login with Facebook” or “Login with Google” are fairly
ubiquitous across web services. These systems benefit users
by reducing the number of credentials they must remember.
When coupled with password managers and/or multi-factor
authentication systems, they provide the basis for a much
stronger web authentication framework than forcing users to
remember a different password for each web site they utilize
would allow.

5.3 Future Extensions

Usability across administrative, developer, and end user
domains remains a challenge in the security realm. Building
secure systems that are easy to use, easy to manage, and
easy to build is a prerequisite to having any security system
gain wide spread adoption. Many otherwise suitable security
approaches have been doomed by the fact that they posed
serious usability issues for one or more of the aforementioned
groups.

One of the major remaining usability challenges is decid-
ing on the best manner in which to manage user secrets
and credentials across the multitude of devices today’s user
expect to use. Traditional agent programs generally fail in
multi-device use cases since these system keep only a local
cache of user secretes that is useless if the user is trying to
authenticate from a system other than the one on which they
originally provided their credentials. This calls for a form
of agent program capable of syncing data across multiple
devices, while also retaining the security of the data should
one of the devices become compromised.

Systems like browser-based password managers or feder-
ated identity services overcome the multi-device issue by
providing a central, often cloud based, repository of user cre-
dentials or identity data. But this introduces a new issue:
trust. Do we really want to be trusting a single third party
cloud provider with all of our credentials, or with our iden-
tity and it’s accompanying metadata? While convenient,
such trust does seed user privacy and control, and poten-
tially increases the risk of user data exposure should a third
party lack scruples, fall to an attack, or be legally compelled
to provide user data.

The best manner in which to provide the kind of con-
venience security agents, password managers, and identity
providers offer while also supporting multi-device use cases
and minimizing third part trust requirements remains an
open question. Omne potential approach to building such
a system would be to leverage one of the aforementioned
cryptographically secure storage technologies as the basis of

multi-device secret manager. Doing this in a manner that
does not increase user burden (by forcing them to operate
their own storage infrastructure) will not be easy. Peer-to-
peer systems like BitTorrent Sync might provide avenues
toward building such a system, but such a system has yet
to be seriously proposed or prototyped. Furthermore, most
cryptographically secure storage systems require some form
of private key management, which in and of itself can pose
usability challenges. This creates a bit of a “chicken and the
egg” problem where technologies to provide security in the
absence of third party trust require just such systems to re-
duce the end-user usage burden. The solution to this cycli-
cal usability vs trust problem is a potential area of active
research (possible avenues for with are discussed in [12]).

6. CONCLUSION

Computer security has been said to be like insurance: no
one wants to deal with it until they need it, and by then it’s
too late. Ensuring that we can build secure computing sys-
tems is going to be the cornerstone or computing’s success in
the future. If computers and the service we build atop them
can not be trusted to remain secure, they will be abandoned
as tools of serious work. In order to advance the state of the
art in computer security, I propose focusing on the following
problems. These topics cut across the previously discussed
security realms and help to elucidate the originally posed
question, “How can we secure our systems and data in a
robust, comprehensive, and easy-to-use manner?”

Multi-User|Multi-Device|Multi-Domain:
Most dominant use cases today require support for all
of the “multi-*” scenarios listed above. Users expect
the ability to share and collaborate with other users,
users expect system to work across a range of personal
computing devices, and users do not wish to be bur-
dened by arbitrary delineations like a specific admin-
istrative domain. Any successful security design must
accommodate all of these desires gracefully if it is to
succeed.

Control of Trust:
The rise of the cloud has provided numerous benefits
and conveniences to most end users. Unfortunately,
it often does so at the expense of allowing users to
decide whom to trust and to place in control of their
data. Successful security systems must grant users the
leeway to pick and chose whom to trust and how their
data can be used.

Usability:
Any security system that significantly (or for that mat-
ter, even moderately) increases the effort a user must
expend to complete a task is doomed to fail. End-
users, developers, and administrators do not generally
enjoy having to think about security. Successful secu-
rity systems must be easy to use and avoid subjecting
users to onerous burdens if they are to be adopted.

These goals are lofty, but I believe they are attainable.
Future research work focused around accomplishing one or
more of them will provide the basis of the future of com-
puting security, and by extension, the future of computing
in general. Working toward the betterment of computer se-
curity is an important pursuit and one that must be under-
taken to ensure the long term viability of modern computing
practices.

2]

3]

[4]

[5]

(6]

7]

8]

[9]

(10]

(11]

(12]

(13]

REFERENCES

BETHENCOURT, J., SAHAI, A., AND WATERS, B.
Ciphertext-Policy Attribute-Based Encryption. In
IEEE Symposium on Security and Privacy, 2007
(May 2007), IEEE, pp. 321-334.

Cox, R., GROSSE, E., PIKE, R., PRESOTTO, D., AND
QUINLAN, S. Security in Plan 9. In USENIX Security
(2002), pp. 3-16.

DirriE, W., AND HELLMAN, M. E. New directions in
cryptography. IEEE Transactions on Information
Theory 22, 6 (Nov. 1976), 644-654.

GOYAL, V., PANDEY, O., SAHAI, A., AND WATERS,
B. Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security - CCS 06 (New York, New York, USA,
2006), ACM Press, p. 89.

KHER, V., AND KiM, Y. Securing distributed storage:
challenges, techniques, and systems. In Proceedings of
the 2005 ACM workshop on Storage security and
survivability (New York, New York, USA, 2005), ACM
Press, p. 9.

MAZzIERES, D., KAMINSKY, M., KAASHOEK, M. F.,
AND WITCHEL, E. Separating key management from
file system security. ACM SIGOPS Operating Systems
Review 33, 5 (Dec. 1999), 124-139.

MiLTcHEV, S., SMITH, J. M., PREVELAKIS, V.,
KEROMYTIS, A., AND IOANNIDIS, S. Decentralized
access control in distributed file systems. ACM
Computing Surveys 40, 3 (Aug. 2008), 1-30.
MoRGAN, R. L. B., CANTOR, S., CARMODY, S.,
HorenN, W., AND KLINGENSTEIN, K. Federated
Security: The Shibboleth Approach. Educause
Quarterly 27, 4 (2004), 12-17.

RIvEST, R. L., SHAMIR, A., AND ADLEMAN, L. A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21, 2
(1978), 120-126.

SAMAR, V. Unified login with pluggable
authentication modules (PAM). In Proceedings of the
3rd ACM Conference on Computer and
Communications Security (New York, New York,
USA, 1996), ACM Press, pp. 1-10.

SANDHU, R. S., COYNEK, E. J., FEINSTEIN, H. L.,
AND YouMAN, C. E. Role-Based Access Control
Models. IEEE Computer 29, 2 (1996), 38-47.

SAYLER, A. Custos: A Flexibly Secure Key-Value
Storage Platform. Master’s thesis, University of
Colorado Boulder, December 2013.

SHAMIR, A. How to share a secret. Communications of
the ACM 22, 11 (Nov. 1979), 612-613.

	Introduction
	Cryptography
	History
	State of the Art
	Future Extensions

	Access Control
	History
	State of the Art
	Future Extensions

	File Systems
	History
	State of the Art
	Future Extensions

	Usability
	History
	State of the Art
	Future Extensions

	Conclusion
	References

