
Custos: Increasing Security with Secret Storage as a Service

Andy Sayler
University of Colorado, Boulder

Dirk Grunwald
University of Colorado, Boulder

Abstract

In the age of cloud computing, securely storing, track-
ing, and controlling access to digital “secrets” (e.g. pri-
vate cryptographic keys, hashed passwords, etc) is a major
challenge for developers, administrators, and end-users
alike. Yet, the ability to securely store such secrets is crit-
ical to the security of the web-connected applications on
which we rely. We believe many of the traditional chal-
lenges to the secure storage of digital secrets can be over-
come through the creation of a dedicated “Secret Stor-
age as a Service” (SSaaS) interface. Such an interface
allows us to separate secure secret storage and access con-
trol from the applications that require such services. We
present Custos: an SSaaS prototype. We describe the Cus-
tos design principles and architecture. We also discuss a
range of applications in which Custos can be leveraged
to store secrets such as cryptographic keys. We compare
Custos-backed versions of such applications to the exist-
ing alternatives and discuss how Custos and the SSaaS
model can improve the security of such applications while
still supporting the wide range of features (e.g. multi-
device syncing, multi-user sharing, etc) we have come to
expect in the age of the Cloud.

1 Introduction

Security is hard, but it is also critical. As we continue to
pour every facet of our day-to-day lives into a growing pot
of cloud-based digital service, the security of these ser-
vices becomes ever more important. Indeed, security may
be the linchpin controlling the success or failure of “The
Cloud” business model as a whole. We need look no fur-
ther than the recent NSA leaks or Heartbleed bug to see
the risks security failures pose. Many of the challenges
underlying the creation of secure systems can be directly
connected to the question of secure secret storage. From
personal information to cryptographic keys, how can we
securely store sensitive “secrets”? Furthermore, any se-
cure secret storage system must support the wide range
of use cases common today: multi-device syncing, multi-

user sharing, etc. Unfortunately, users find existing “se-
cure” storage systems difficult to use [31], developers find
“secure” storage systems challenging to build [2], and us-
ing third party “secure” storage providers raises numerous
questions of privacy and trust [11].

Take, for example, a cloud-backed file locker service
like Dropbox [4]. Such services are extremely popular
since they provide easy access to desirable features like
cloud-backed multi-device syncing or multi-user sharing.
But these features come at the expense of control over
who can access your data: any data stored via Dropbox
is accessible to the Dropbox corporation, anyone with
subpoena power over the corporation (e.g. the US gov-
ernment), or anyone who gains unauthorized access to
the corporation’s infrastructure (e.g. malicious crackers).
While Dropbox provides server-side encryption of data at
rest and SSL encryption of data in transit [5], these meth-
ods deprive the user of exclusive control over and knowl-
edge of the associated encryption keys, forcing them to
trust Dropbox itself to safeguard their data. We could mit-
igate these risks by encrypting all our data locally (i.e.
client-side) before sending it to Dropbox, but doing so
would break many of the useful features Dropbox pro-
vides: e.g. sharing data with other users or syncing it
across multiple devices now requires manual out-of-band
encryption key exchange. As in many related situations,
the challenge is one of secure secret storage and access
control: how do we securely store and control access to
the secret encryption keys used to encrypt data atop Drop-
box while still enabling features like multi-user sharing or
multi-device syncing?

The creation of a standard, dedicated “Secret Storage as
a Service” (SSaaS) interface can ease many of the existing
issues associated with securely storing secrets: it relieves
developers of the burden of building ad-hoc secure stor-
age systems from scratch, it provides users with the flex-
ibility to pick SSaaS providers they trust, and it isolates
the most sensitive components of our applications behind
a dedicated, vetted, and centrally administered interface.
In this paper, we present Custos1: our prototype SSaaS

1Custos is Latin for “Guard”.

Figure 1: Custos Platform Overview

platform [26]. Custos extends traditional object storage
semantics to add flexible, fine-grained access control and
robust access auditing functionality to each stored object.
These features make Custos an ideal system for imple-
menting a secret storage service well suited for storing
cryptographic keys (i.e. “Key Storage as a Service”).

2 Goals

Custos (Figure 1) is designed around three core goals:

Decoupled: Existing applications are generally bundled
with their own ad-hoc secret storage and access control
components. This practice unnecessarily couples the gen-
eral problem of securely storing and controlling access
to various secrets with the specific solution a particular
application implements. Such coupling has many down-
sides: developers are forced to re-implement non-trivial
secret storage schemes for each application they create,
these ad-hoc implementations are often un-vetted, and
users or administrators are rarely able to flexibly mod-
ify the system semantics to accommodate situations the
original developers failed to anticipate (e.g. new authenti-
cation protocol, etc). Custos breaks this unnecessary cou-
pling and resolved these downsides by providing a dedi-
cated service to store and control access to any secret an
application requires.
Flexibility: Not all secrets are created equal, and neither
are the means by which we must protect them. Some se-
crets must be shared with third parties (e.g. SSNs) while
others should only be accessible to the original creator
(e.g. GPG keys). Some data must be accessible to au-

tomated processes (e.g. file system encryption keys must
be accessed by backup apps) while others must be kept in
sync across a range of devices (e.g. private ssh authen-
tication keys must be synced across a user’s laptop and
desktop). Any secret storage system that forces a single
authentication and authorization model on all secrets is
inherently limiting. Custos strives to overcome this issue
by providing a flexible and extensible authentication and
authorization framework capable of supporting separate
security and usage models for each secret it stores. Fur-
thermore, the standardization of the Custos interface pro-
vides users the flexibility to select from a range of Custos
providers, shard their secrets across multiple providers, or
even host their own personal Custos server. This provides
the user with control over the degree to which they trust
third parties with various secrets.
Auditing: One of the major challenges to using and shar-
ing secrets like cryptographic keys is how to properly han-
dle secret leaks or access revocation. Once a user has ac-
cessed a secret, there is no reliable2 way to force them to
“un-see” what they have “seen” (and potentially copied,
photographed, etc). Thus, the effect of revoking a user’s
access to a secret is often dependent on the secret’s ac-
cess history. Since Custos provides a logically central-
ized point through which all secret requests flow, it is in
an ideal position to provide an audit trail for any secret it
stores. To facilitate this use case, Custos provides a frame-
work for detailed secret usage auditing. Using the Custos
audit data, an administrator can compute exactly what ef-
fect and guarantees a revocation operation will have: e.g.
determining cases where guaranteed revocation is impos-
sible because a user has already accessed and potentially
copied a given secret. These auditing features are also ex-
tremely beneficial if a Custos-backed application is ever
cracked: Custos’s auditing functionality provides the in-
formation necessary to place bounds around the potential
side effects a secret leak might incur.

3 Applications

The Custos architecture enables a range of use cases not
readily available today. For example, Custos-based en-
cryption systems can transparently encrypt files atop third
party cloud services (e.g. Dropbox) while still supporting
the multi-device sync, multi-user sharing features these
services provide. Likewise, Custos can be used as the
backing-store for a key-based authentication systems (e.g.
SSH) by storing a user’s private authentication keys for
access from multitude of devices. In both cases, Custos

2At least within the range of ethically acceptable possibilities.

2

can make cryptographic applications more accessible and
usable from both end user and a management perspec-
tives. It can also ease the development burden of such
systems by providing a dedicated key management ser-
vice that relieves developers from the effort required to
“roll their own” ad-hoc secret management. Custos al-
lows users to isolate the trust they must place in a system
to one or more dedicated SSaaS providers in charge of
storing and regulating access to their secrets (e.g. crypto-
graphic keys). These users may then leverage a variety of
untrusted services relying on Custos-backed cryptography
layers to sit between them and the untrusted service.

3.1 Encrypted File Locker

Cloud-based file locker services are one of the most com-
mon ways to sync files across devices and share them with
others. Service like Dropbox [4] or Drive [9] are com-
mon in both the home and office. While convenient, such
services have a significant downside: the cloud provider
backing each service has full and unfettered access to each
user’s files. This makes such service inadequate for use
in privacy-minded, high-security, or tightly-regulated do-
mains. Services like SpiderOak [28] have been created
to address the privacy and security concerns associated
with traditional cloud file locker services, but even these
“secure” file lockers suffer from privacy issues since the
service provider generally retains access to the user’s en-
cryption keys in order to enable support for features like
sharing data with other users [32]. An end user could
manually encrypt all of their data or leverage a layered
encrypted file system like eCryptfs [12] before pushing it
up to a cloud file locker service, mitigating the privacy risk
by personally maintaining control of all encryption keys,
but such efforts would break the sharing and syncing use
cases that make file locker services desirable in the first
place.

To counter these issued, Custos can be used to build a
client-side encryption layer atop traditional cloud-backed
file lockers like Dropbox. Figure 2 shows the basic de-
sign of such a system. Similar to a service like Spi-
derOak, a Custos-backed encrypted file locker transpar-
ently encrypts all user data client-side before sending it
to the cloud-based storage provider. This ensures that
the storage provider never has access to any unencrypted
user data. Unlike existing services, a Custos-backed sys-
tem then stores the client encryption keys with a sepa-
rate, dedicated SSaaS provider, ensuring that no single
third party ever posses both the encrypted data and the
keys needed to decrypt it. When a user wishes to ac-
cess their files, they request the necessary encryption keys

Figure 2: Custos-Backed Encrypted Cloud File Locker

from their SSaaS provider and the encrypted data from
their storage provider, allowing the data to be decrypted
locally and returned to the user. This model supports tra-
ditional file locker use cases like multi-device syncing:
the user must simply grant each of their devices access
to the necessary encryption keys via the SSaaS provider’s
management interface. Likewise, to share data with other
users, the user must simply grant another user access to
the appropriate per-file keys. This model allows existing
cloud-based storage providers to continue providing basic
data storage services while relieving end users of the need
to trust such providers with the contents of their data, all
while continuing to support modern day usage demands.

3.2 Multi-Device, Managed SSH Agent

The management of private cryptographic keys has long
been a challenge for users. To help mitigate this chal-
lenge the systems community has developed the concept
of an “agent” program. Agent programs sit between the
user and an authentication system, providing the required
cryptographic keys on the user’s behalf to the authenti-
cation system when required [3]. Agents are commonly
used with popular computing utilities like SSH [33] and
GnuPG [15]. Unfortunately, existing agent solutions are
designed for legacy usage models: single-device, non-
portable desktop environments. They do not provide a
mechanism for managing private keys across multiple de-

3

Figure 3: Custos-Backed SSH Agent

vices, securing keys if the associated device is lost or
stolen, or managing keys for a large group of users across
an organization.

The locality and management challenges associated
with traditional cryptographic agent programs can be
overcome by using a Custos-backed agent. Figure 3
shows the basic design for a Custos backed SSH-agent.
Instead of storing private keys locally, such an agent
would defer private key storage to a dedicated Custos
SSaaS provider. When the agent requires the user’s keys,
it requests them from the SSaaS provider. Thus, the user
and any associated agent programs are able to securely
access the necessary private keys from multiple devices
(e.g. laptop, desktop, tablet). Furthermore, if the user
ever loses one of their devices, they can greatly reduce
the risk of exposing any of their private keys but revok-
ing the lost device’s access to the off-site SSaaS data (e.g.
similar to [8] and [30]). Such a system would also al-
low large organizations to manage SSH or other crypto-
graphic keys for all their users from a centralized Custos
management applications. Divorcing private key storage
from local devices opens up a range of use case possibil-
ities, increases security by keeping keys off of frequently
lost or stolen portable devices, and relieves the user of the
usability overhead required to manually manage their pri-
vate keys.

Figure 4: Custos-Backed Dedicated Crypto Processor

3.3 Dedicated Crypto Processor

The recent Heartbleed bug [2] exposed one of the main
risks of embedding cryptographic secret storage within
the applications requiring access to these secrets: when
applications break, they also risk exposing access to
the private keys stored in the same memory segments.
The Heartbleed fallout has forced everyone to reevalu-
ate whether or not giving public-facing services direct ac-
cess to cryptographic keys is a good idea. There has long
existed an alternative: using a hardware security module
(HSM) to perform dedicated crypto processing and key
storage on behalf of other services. Such systems ensure
that cryptographic keys are never exposed outside of the
secure hardware module. Programs communicate with the
HSM via a standard protocol like PKCS#11 [7], sending
the HSM clear-text data to encrypt and getting back the
encrypted ciphertext in return. Unfortunately, most ex-
isting HSM solutions don’t scale to the levels required
for high-volume services. This has led some to suggest
moving to a software-based “HSM” model [18]. Such
softHSM systems would still ensure cryptographic keys
remain stored in separate isolated memory spaces while
also out-performing traditional HSM systems.

A software-based dedicated crypto processing system
is an ideal use case for a SSaaS system like Custos. Fig-
ure 4 shows the potential design of such a system. Here, a
Custos SSaaS provider supplies the back-end key storage
for a dedicated crypto processing server which performs
cryptographic operations (e.g. SSL) on behalf of a web-
server. In this setup, the web-server never accesses any
private cryptographic keys directly, mitigating one of the
major risks Heartbleed exposed. Furthermore, the logi-
cally centralized nature of an SSaaS interface like Custos
allows dedicated crypto processing servers to scale hor-

4

izontally (e.g. multiple load-balancing instances) as de-
mand requires. Storing all keys via a Custos provider al-
lows new crypto processing instances to immediately ac-
cess these keys without the need to utilize ad-hoc key-
syncing or configuration management interfaces. Further-
more, Custos’s auditing functionality ensures that you al-
ways know which keys have been accessed by which sys-
tems, placing hard bounds on what an attacker may or may
not have had access too: a luxury that Heartbleed-prone
servers did not have.

4 Threat Model and Mitigation
The SSaaS model is designed to operate securely as long
as certain assumptions are met. The primary assump-
tion is that SSaaS (e.g. Custos) service providers are dis-
charging their SSaaS duties faithfully. Namely, they must
only grant access to the secrets they store as per the user-
provided access control specifications (§ 5). We realize,
however, that fully placing one’s trust in a single third
party SSaaS provider is not always practical nor desir-
able. Thus, Custos provides several mechanisms for limit-
ing and managing service provider trust. In particular, the
Custos architecture allows user to securely shard their se-
crets across multiple, non-cooperating SSaaS providers.
A variety of secure secret-sharing (e.g. [27, 10]) sys-
tems have been proposed and these system can be lever-
aged by Custos-backed applications to split Custos data
between multiple non-cooperating SSaaS providers (Fig-
ure 5). Thus, even if a single provider proves to be un-
trustworthy, their share of each secret is useless unless
they are able to collude with other providers to obtain ac-
cess to the requisite K shards. Such a strategy has ad-
ditional benefits beyond limiting trust: it also increases
availability. Shamir-like secret sharing systems offer re-
dundancy through the over-subscription of shares, allow-
ing reassembly of a secret using only K of a set of N total
shards.

Beyond formal secret sharing schemes, we believe the
SSaaS model itself provides incentives for trustworthy
provider behavior: an open market of competing SSaaS
service providers would tie trustworthiness to free mar-
ket competition [1]. If a user finds that a specific Custos
provider is prone to misbehavior, they can take their se-
crets elsewhere. A competitive ecosystem makes provider
misbehavior only desirable in cases where the gain from
dishonestly disclosing one customer’s secrets is worth
more than the cost of losing all of your other customers.
In most situations, the economics favor SSaaS providers
striving to provide the strictest adherence to the SSaaS
provider trustworthiness assumptions: aligning the SSaaS

Figure 5: Custos Multi-Provider Sharding

consumer’s goals with those of the SSaaS provider.

The threat model for a given SSaaS-backed applica-
tion is largely a function of the application’s implemen-
tation. For example, a Custos-backed file system may opt
to maintain a local cache of encryption keys to allow of-
fline file access. Such behavior, however, would open an
additional attack vector whereby an adversary must only
compromise the local key cache without ever having to
compromise a Custos server itself. Custos, however, is
designed to be flexible, which means leaving such trade-
offs up to each individual application.

As previously mentioned, secret access via Custos is a
one-shot game: once a user has been granted access to a
secret, it must be assumed that the user will always have
access to that secret and any data protected with it. This
“inability to revoke access to previously accessed data”
problem is not unique to Custos. As such, Custos can
mitigate this issue in the same manner other systems have:
through versioning, key rotation, and lazy revocation [13].
While Custos can not guarantee access revocation to data
that has already been decrypted and read, Custos can re-
voke access to all future versions of that data. For exam-
ple, a Custos-backed file encryption application can re-
encrypt a file with a new Custos-stored key each time the
file is updated. When a user revokes access to a Custos
object, Custos blocks all access to any versions of that ob-
ject uploaded after the revocation occurs. In the file sys-
tem example, this prevents users from viewing updates to
a file after their access has been revoked.

5

Figure 6: Custos’s Organizational Units

5 Design
Figure 1 shows the core Custos components. The bulk of
Custos functionality is handled on the server side. The
Custos server implements the following components:

API Handles all Custos requests, including requests for
key:value objects, requests for audit data, and re-
quests to modify access control parameters. The API
is designed to promote a variety of Custos-compliant
server implementations.

Access Control Compares the set of provided authenti-
cation attributes (calling into the authentication sys-
tem to verify them) to the set of required authentica-
tion attributes to determine if a Custos request should
be allowed or denied.

Authentication Verifies the validity of any authentica-
tion attributes associated with a given Custos request
via a pluggable authentication module interface ca-
pable of supporting a variety of authentication prim-
itives.

Data Handles data API requests (e.g. get, set, create, and
delete of key:value objects).

Auditing Handles audit API requests and logs all Custos
requests and their corresponding responses.

Management Handles management API requests (e.g.
the manipulation of access control parameters).

Key-Value Secret Store Stores persistent data such as
end-user secrets (e.g. encryption keys) as well as in-
ternal state (e.g. access control requirements).

5.1 Custos Access Control
The Custos access control abstraction lies at the core of
Custos’s flexible semantics.

In order to discuss the Custos access control system, we
must first explain the Custos organizational units (OUs):
the core Custos data structures. The Custos architecture
specifies three organizational units (Figure 6): a server,
a group, and a key:value object. The server unit is used

Figure 7: Access Control Specification Components

to specify server-wide configuration. A server has one or
more groups associated with it. A group is used to slice
a server between a variety of administrative domains (e.g.
separate customers). A group, in turn, has an arbitrary
number of key:value objects associated with it. Each OU
is responsible for the creation of OU instances beneath it:
i.e. servers create groups and groups create objects.

The Custos access control abstraction revolves around
designating an Access Control Specification (ACS) for
each OU in the Custos architecture. An ACS consists of
three components (Figure 7). Each ACS contains a full
list of the applicable permissions for the given OU. Asso-
ciated with each permission is one or more access control
chains (ACCs). Each ACC consists of an ordered list of
authentication attributes.

5.1.1 Permissions

Each Custos ACS contains a list of permissions: rights to
perform specific Custos actions. Custos defines permis-
sions for each OU: i.e. per-server permissions, per-group
permissions, and per-object permissions (Table 1). Un-
like many systems, Custos has no notion of object own-
ership. Instead, it relies on explicitly granting each right
an owner would traditionally hold via explicit permission-
ing. Custos permissions are initially set when the as-
sociated OU is created. After creation, each ACS can
be updated by anyone granted the necessary acs set
permission for the specific OU instance. Custos group
and server ACSs also include an “override” permission.
This permission can be used to override the permis-
sions of a lower-level OU’s ACS. For example, any-

6

Permission OU Rights
srv grp create Server create groups on a Custos server
srv grp list Server list groups on a Custos server
srv grp override Server escalate to any group-level permission, overriding the per-group ACS
srv audit Server read all server-level audit information
srv clean Server delete all server-level audit information
srv acs get Server view the server-level ACS controlling the permissions in this list
srv acs set Server update the server-level ACS controlling the permissions in this list
grp obj create Group create a key:value objects within the given group
grp obj list Group list key:value objects within the given group
grp obj override Group escalate to any object-level permission, overriding the per-object ACS
grp delete Group delete the given group on a Custos server
grp audit Group read all group-level audit information
grp clean Group delete all group-level audit information
grp acs get Group view the group-level ACS controlling the permissions in this list
grp acs set Group update the group-level ACS controlling the permissions in this list
obj delete Object delete the given key:value object within the given group
obj read Object read the given key:value object within the given group
obj update Object create a new version of the given key:value object within the given group
obj audit Object read all object-level audit information
obj clean Object delete all object-level audit information
obj acs get Object view the object-level ACS controlling the permissions in this list
obj acs set Object update the object-level ACS controlling the permissions in this list

Table 1: Custos Permissions

one gaining the srv grp override permission can
use it to gain any of the rights normally granted via a
group-level permission. Likewise, anyone gaining the
grp obj override permission can use it to gain any
of the rights normally granted via an object-level permis-
sion. These overrides exist for administrative tasks: al-
lowing server admins to manipulate group data, and al-
lowing group admins to manipulate object data.

5.1.2 Access Control Chains

Each ACS permission has one or more associated ac-
cess control chains (ACCs). An access control chain is
an ordered list of authentication attributes (discussed in
§ 5.1.3). In order for a request to be granted a specific
permission, it must be able to provide authentication at-
tributes satisfying at least one of the ACCs associated with
that permission. If a user wishes to disable access to a per-
mission, they can do so by associating the null ACC with
that permission. If the user wants to provide unrestricted
access to a permission, they may do so by associating an
empty ACC with the permission. For example, consider
a key:value object whose obj read permission has the

following ACC set:

[(user_id = Andy),
(ip_src = 192.168.1.0/24),
(psk = 12345)]

[(user_id = Andy),
(ip_src = 192.168.1.0/24),
(cert_id = 0x32C59C00)]

[(user_id = John),
(psk = Swordfish)]

In order for our read request for the associated
key:value object to succeed, we would have to make sure
that our request contained all the authentication attributes
in at least one of the lists above. In the case of the first
ACC, that would mean attaching the ’user id’ attribute
with a value of ’Andy’, as well as attaching the ’psk’ at-
tribute with a value of ’12345’. The ’ip src’ attribute is
an implicit attribute (see § 5.1.3) and will be automati-
cally appended to our request when received by the Cus-
tos server. In order to satisfy it, we would have to send
the request from the 192.168.1.0 subnet. In the case of
the second ACC, we still need the ’Andy’ username and
must satisfy the IP restriction, but this time we must prove
that we have access to the private key associated with the

7

specified authentication certificate instead of providing a
password. In the third ACC, we have granted access to
an additional user, John, with his own password. As long
as we can satisfy at least one ACC in a set of ACCs for
a given permission, we are granted the right to perform
actions associated with the permission.

This system is highly flexible. Take, for example, the
lack of explicit username support anywhere in the Custos
specification. As was done above, usernames simply be-
come another authentication attribute. Often a username
will be the first attribute in a ACC to allow for all follow-
ing attributes to be specified relative to a given username
(as shown in the example above). But there’s nothing spe-
cial about usernames. We could just have easily started
each ACC with an IP attribute, requiring a separate pass-
word based upon the location a user is making their re-
quest from. The combination of simple ordered attribute
lists and a wide range of flexible attributes makes for pow-
erful access control semantics.

Another point worth noting is that sets of ACCs can
be converted into ACC trees, often simplifying the under-
standing or verification of their semantic intent. ACC lists
are converted into ACC trees by combining common at-
tributes across multiple ACC lists into single nodes in an
ACC tree. For example, the first two ACCs in the previous
set of ACCs could also be represented as:

(user id = Andy)

(ip src = 192.168.1.0/24)

(cert id = 0x32C59C00)(psk = 12345)

Finally, where desired 3, the Custos API can continue
to prompt the user for the next N missing attribute types in
a chain. When in use, this feature allows a Custos server
to engage in a back-and-forth message exchange with a
client to prompt the client through all required attribute
types in an ACC. For example, in the case where N is
equal to 1 and the previously mentioned ACCs are in ef-
fect, the following set of transactions would occur:

1. The user sends a read request with no attributes
2. The server respond that a username is required
3. The user resubmits the request with an attached user-

name attribute equal to ’Andy’
4. The server responds that a password or a certificate

is required (the IP attribute is implicit and is thus not
prompted for)

3Custos’s attribute prompting feature is a form of information leak-
age, so its use, and the associated trade-offs, are optional.

Type Class Description
ip src implicit Request source IP
time utc implicit Request arrival time
user id explicit Arbitrary user ID
psk explicit Arbitrary pre-shared key

Table 2: Example Authentication Attributes

5. The user resubmits the response with a password
equal to ’12345’

6. As long as the user’s request originates from the
specified IP range, the server will grant the request.

5.1.3 Authentication Attributes

Each Access Control Chain contains one or more Authen-
tication Attributes (AAs). An authentication attribute is a
generic container for authentication data. AAs contain the
following information:

Class The top level classification property of an AA.
It is used to designate the nature of a given AA.
Currently, Custos specifies two possible values for
class: “implicit” and “explicit”. Implicit attributes
are those that are automatically associated with a re-
quest (like an IP address). Explicit attributes are
those that the user provides directly to Custos (like
a username).

Type Within a given class, the AA type specifies which
authentication plugin should handle a specific at-
tribute.

Value The value contains the arbitrary data associated
with a given attribute.

The Custos specification supports a flexible set of au-
thentication types. Each AA is processed by a specific
AA plugin module allowing for extensible authentication
primitive support similar to systems like PAM [22]. Ex-
amples of potential Custos AA types are shown in Table 2.

5.1.4 Access Example

To demonstrate the full access control process, consider a
Custos-backed encrypted file system application. In our
example, two users of this application are attempting to
access an encrypted file. In order to decrypt the file and
provide access, the encrypted file system must query Cus-
tos for the necessary encryption key.

The first user is a daemon process running on a head-
less server (IP = 1.2.3.4). The encryption key for the file
the daemon wishes to read has an ACS associated with it

8

that grants the obj read permission on the basis of two
implicit attributes: the host IP and the time:

{
obj_read:

[
[(ip_src = ’1.2.3.4’),

(time_utc = ’1300 +/- 5’)]
...

]
...

}

When the daemon reads the file, the encrypted file
system requests the associated encryption key from the
server. The request passes through the access control
module, which looks up the Access Control Chains as-
sociated with the obj read permission for the requested
encryption key object. The request is then passed to each
of the necessary Authentication Attribute modules in the
order they appear in the ACC. Because the request is com-
ing from an allowed IP, it passes the source IP verifica-
tion module. Next, as long as the request is being made
within 5 minutes of 1300 hours UTC, the request will also
pass the time verification module. After satisfying both
attributes specified in the ACC, the request is granted the
obj read permission and passed to the audit module for
logging. Finally, the server looks up the requested object
(in this case the encryption key for the corresponding file),
generates a response, and returns it to the encrypted file
system. The file system uses the returned encryption key
to decrypt the file and returns the contents to the daemon
that originally made the read request. All of this is done
without requiring any interactive input on the part of the
user, overcoming one of the traditional obstacles to using
encryption with automated processes.

The second user is a human named Eric who is also
trying to read a file on the encrypted file system. The en-
cryption key for the file the user wishes to read has an
ACS associated with it that contains the obj read per-
mission and grants access to this permission on the basis
of the user ID and a password:

{
obj_read:

[
[(user_id = ’Eric’),

(psk = ’password’)]
...

]
...

}

When the user reads the file, the encrypted file system
requests the associated encryption key from the server, at-
taching the current user’s ID of ’Eric’ to the request (but

excluding the password). The request passes through the
access control module, which, as before, looks up the Ac-
cess Control Chains associated with the obj read permis-
sion for the requested key:value pair. The request is then
passed to the user ID verification authentication plugin,
which confirms that the user ID of ’Eric’ is present, next
the request is passed to the PSK module for password ver-
ification. Unfortunately, the request lacks the necessary
password, so the server responds to the request informing
the encrypted file system that a password is required for
user ’Eric’. The encrypted file system prompts the user
for their password, and reissues the request, appending
the newly provided password of ’password’. This time
the request clears both AA verification modules, passes
through the auditing system, and finally hits the actual ob-
ject store. Here the server looks up the requested encryp-
tion key, generates a response, and returns it to the file
system. The file system decrypts the requested file and al-
lows the user’s read operation to proceed on the resulting
clear text.

5.2 API

The Custos API is the primary interface for interacting
with a Custos server. The API handles data, management,
and auditing requests through a common interface. All
API requests provide authentication attributes as a means
of attaining the necessary permission level for a requested
operation. The order in which these authentication at-
tributes are passed in each request is not relevant. Custos
treats them as a heap of attributes and attempts to extract
attributes from the heap in an order that will satisfy the
requirements of a specific ACS. The API is RESTful and
stateless (although individual authentication modules may
maintain state if required).

The Custos API is secured via SSL/HTTPS. Custos
servers are authenticated over SSL via the standard public
key infrastructure (PKI) mechanisms (e.g. certificate au-
thorities, etc)4. API requests are made to specific server
HTTPS endpoints. The standard HTTP verbs (GET, PUT,
POST, and DELETE) are used to multiplex related op-
erations atop a specific endpoint. Each combination of
endpoint and verb defines a specific API method. Each
method requires a specific permission to complete. All
API message formats are composed in JSON. Binary
data is encoded as Base64 ASCII text. Authentication
attributes are passed via query string as URL encoded
JSON. Custos uses UUIDs [17] as keys, each associated

4In situations were the traditional PKI mechanisms are deemed un-
desirable, we are also exploring authenticating Custos servers via self-
certifying mechanisms [6, 19].

9

with an arbitrary object for values. The full API specifi-
cation, including detailed message formats, example mes-
sages, and a full list of endpoints and methods is available
in [26].

6 Prototypes and Evaluation

We have built prototype implementations for both a Cus-
tos server and an example Custos application. These im-
plementations demonstrate the benefits a “Secret Storage
as a Service” architecture can provide over traditional ad-
hoc secret storage systems. Our Custos prototypes are
available via git at [23, 24, 25].

6.1 Custos Server

Our prototype server implementation [23] is written in
Python adhering to the architecture discussed in § 5. The
prototype server implementation can interface with a vari-
ety of off-the-shelf backing stores from local files to SQL
and NoSql databases. The bulk of server code is spent
performing the necessary Access Control regulations: rea-
sonable given that the bulk of the Custos server exists for
the purpose of performing access control. The use of a
web-app friendly language and an HTTP-based interface
clearly reduces the amount of code required by allowing
most of the complexity associated with networking and
message exchange to be handed off to existing libraries.
Using an off-the-shelf backing store also simplifies the
Custos code base by avoiding the need to build an en-
tirely new object storage database from scratch. Over-
all, we found the creation of a Custos-compliant server
a relatively straightforward and manageable undertaking,
suggesting that Custos-compliant interfaces would not be
difficult for other SSaaS server developers to adopt.

6.2 EncFS: A Custos-backed Encrypted FS

On the application front, we began by creating a reference
client library appropriate for use with C-based Custos ap-
plications: libcustos [25]. libcustos deals with
translating Custos JSON messages into C data structures
and providing primitives for communicating with Cus-
tos HTTPS servers. It exposes a series of functions for
dealing with Custos data types, handling data type mem-
ory management, making Custos requests, and process-
ing the resulting response. The library makes it easy to
interface C applications with the Custos architecture. We
have leveraged libcustos to build a Custos-backed en-
crypted file system.

Figure 8: The EncFS File System Architecture

As discussed, encrypted file systems are a core Custos
use case. As such, we have written a Custos-backed lay-
ered, encrypted, pass-through file system: EncFS [24].
This file system leverages Custos for encrypted file key
storage. In doing so, it enables use cases not normally
available in other encrypted file systems. For example,
since EncFS is a pass-through file system, it can be used
atop existing Cloud storage systems like Dropbox [4], se-
curing storage of a user’s files in the cloud. Unlike ex-
isting encrypted file systems, the centralized-nature of a
Custos server enables access to the encrypted files from
multiple devices or by multiple users, allowing a user to
use Dropbox as they normally would to sync files across
multiple devises or to share files with others, all while still
benefiting from client-side encryption. In addition to the
cloud syncing and sharing use cases, the file system has
proven useful for use on servers, where Custos’s flexible
authentication primitives can be programmed to support
daemon-based non-interactive access. This has allowed us
to encrypt server files like logs or mailboxes that normally
must not be encrypted in order to support non-interactive
access by background system processes.

Figure 8 shows the EncFS architecture. EncFS acts
as a shim between file system operations (read, write, cre-
ate, etc) and the actual realization of these operations on
the underlying file system, providing transparent encryp-
tion in the process. When a user wishes to decrypt a file,
EncFS requests the associated encryption key from the
Custos server using the UUID stored with the file (ei-
ther via extended attributes or in a header block appended
to the encrypted file contents, depending on underlying
file system’s support for extended attributes). If EncFS
posses the necessary authentication attributes (either sup-

10

M
ir

ro
r

E
nc

ry
pt

C
us

-L
oc

C
us

-L
A

N

C
us

-W
A

N

0

30

60

90
75

69 71 72 76

(a) dd Copy Throughput (MB/s)

M
ir

ro
r

E
nc

ry
pt

C
us

-L
oc

C
us

-L
A

N

C
us

-W
A

N

0

200

400

600

82

317 320 330

493

(b) ioping Write Latency (ms)

M
ir

ro
r

E
nc

ry
pt

C
us

-L
oc

C
us

-L
A

N

C
us

-W
A

N

0

100

7.1K 6.5K

118 113

5

(c) bonnie++ Create IOPS

Figure 9: EncFS Benchmarks

plied by the user at mount time or derived contextually),
Custos returns the requested encryption key and EncFS
proceeds to decrypt the file. The opposite operation oc-
curs when a file is created or written. As long as the user
has the necessary permissions, all encrypted file access
via EncFS is fully transparent, allowing easy integration
with other applications via the standard Linux VFS inter-
face.
EncFS is implemented using the FUSE [29] user-space

file system framework. We chose a FUSE-based imple-
mentation over a native Linux kernel-module implemen-
tation for EncFS in order to allow easy usage of a variety
of user-space libraries (i.e. libcustos, OpenSSL, etc).
All encryption in EncFS uses the AES symmetric encryp-
tion cipher with 256-bit keys. Encryption operations are
handled by the OpenSSL [20] crypto library. EncFS in-
teracts with Custos via the libcustos library. This al-
lows EncFS to offload the complexities of the Custos API
to a dedicated code base, and greatly simplifies interfacing
EncFS with Custos. We have found that adding Custos
support to EncFS actually makes the code shorter than it
would be if we were to build key management and access
control directly into the file system from scratch, support-
ing our belief that SSaaS systems ease development bur-
dens.

Figure 9 shows the results of a set of simple bench-
marks for a progression of EncFS features: a basic
FUSE mirroring file system without encryption (Mir-
ror), an encrypted FUSE file system with local key man-
agement (Encrypt), and an encrypted FUSE file system
with Custos-based key management and a local Custos
server (Cus-Loc), LAN-based Custos server (Cus-LAN),
and WAN-based Custos server (Cus-LAN). As one would

expect, interfacing a file system with a Custos server does
incur additional latency on each initial file access due to
the need to query the Custos server for the appropriate
encryption keys. This added latency has very little ef-
fect of the standard read/write throughput of the file sys-
tem since each read/write operation only requires a sin-
gle Custos key access (Figure 9a). Instead, the added la-
tency primarily effects the file system access latency (Fig-
ure 9b) and IOPS (Figure 9c). The nature of the connec-
tion between the Custos-backed applications and the Cus-
tos server has a large effect on this latency, ranging from
relatively minimal in situations with a high speed network
connection (e.g. Local LAN based server) to fairly high
in situations with a low speed network (e.g. over a 4G-
based WAN connection). We have found, however, that
the added latency is acceptable from a user perspective
for most day-to-day applications where read/write perfor-
mance is more critical than IOPS throughput (e.g. playing
media files). Currently, the latency overhead of high speed
network connections is limited by the performance of our
prototype Custos server. We have plans to continue de-
veloping our reference server implementation to increase
this performance and ensure that the network is the pri-
mary limiting factor to Custos-induced latency overhead,
not the server itself. In cases where the added latency of
using Custos is unacceptable, we are exploring the addi-
tion of client-side caching functionality to libcustos,
minimizing latency on subsequent access to keys. This
strategy could also be used to enable offline operation in
EncFS.

11

7 Related Work
A variety of encrypted file systems exist with the goal of
enabling secure data storage [14]. As we have shown,
however, many of these system suffer from the entangle-
ment of key management and the underlying encryption.
We are not the first to recognize the challenges this en-
tanglement imposes. SFS [19] and Plutus [13] were de-
signed to separate cryptographic key management from
encrypted data storage, allowing for more flexible key
management in the process. But both SFS and Plutus
fail to fully define a standardized, generic, and flexible
external system for storing and managing keys, making
a generic “Secret Storage as a Service” architecture im-
possible to realize with either system. In particular, SFS
purposely avoids specifying any key management solu-
tion, instead focusing on mechanisms that allow the user
to select their own key management system (e.g. Custos).
Plutus provides basic key management functionality, but
it bundles these tightly with the underlying file system,
forcing the user to use both or neither and preventing the
user from selecting dedicated third party SSaaS providers.

Password management systems (e.g. [16] share some
of the same goals as Custos and can be viewed as a sub-
set of the more generic SSaaS model. Such systems are
designed to enable users to use longer, less predictable
passwords by providing a dedicated system that stores and
fills password feels on a user’s behalf. The user must only
remember a single strong password, relying on the pass-
word manager to store and supply long random passwords
for all the other services a user leverages. Custos could be
used as the secret storage back end for a range of exist-
ing password manager front ends, providing more flexible
password access control semantics in the process and al-
lowing the user to select a SSaaS provider of their choice.

Rackspace’s CloudKeep [21] aims to create a standard-
ized key management system for use across multiple ap-
plications, avoiding the need to re-implement such sys-
tems in each application. Similar to Custos, CloudKeep
aims to ease developer burden while increasing the secu-
rity of end-user applications by focusing security code in
a centralized, carefully curated system. CloudKeep, how-
ever, lacks the generic flexibility and powerful seman-
tics of Custos’s authentication and access control mech-
anisms.

8 Conclusions
Secret storage is a critical requirement of almost all mod-
ern applications. A flexible, standardized, and service-
oriented interface for secret storage provides numerous

benefits: the separation of access control from the un-
derlying applications, the ability to select from numerous
SSaaS providers, the centralization of security-sensitive
code in a dedicated library, etc. Custos provides a refer-
ence SSaaS architecture and is well suited for the storage
of private encryption keys in a variety of applications. By
offloading the storage of encryption keys to a dedicated
service, we can allow encryption applications to focus
on the task of encryption while dedicated Custos SSaaS
servers focus on the task of securely storing and regulat-
ing access to cryptographic keys. Using a dedicated se-
cret storage service like Custos expands the range of use
cases supported by encryption applications by providing
flexible access control semantics and globally accessible
key storage. The Custos access control scheme, from the
pluggable authentication modules to the arbitrary access
control chains, allows for a wide range of access control
intentions to be expressed in a common manner. The log-
ically centralized nature of Custos allows applications to
support traditionally challenging use cases like multi-user
and multi-device access with little extra effort.

While Custos has shown promise, it is certainly not
without challenges. While we believe many existing sys-
tems could be refactored to use Custos with minimal ef-
fort, the task of doing so, or convincing others to do so,
in still non-trivial. The performance overhead of using
a networked SSaaS system also deserves further study.
For many end-user applications, raw performance is not
the primary concern, and there may exist a willingness
to sacrifice some (often unnoticeable) performance in the
name of increased security and usability. That said, the
overhead of adopting Custos across a wide range of ex-
isting applications has not been evaluated. Finally, Cus-
tos’s authentication system, especially the access control
chain component, is highly flexible. But it remains to be
seen whether or not this flexibility will lead only to in-
creased ease of use and breadth of deployment (our goal),
or whether it risks giving the user too much freedom, mak-
ing it prone to misconfiguration and errors.

Our work thus far has resulted in a prototype SSaaS
platform. There is still work to be done to make Custos
a fully production-ready and proven system. We plan to
expand the reference Custos server implementation mak-
ing it more robust, scalable, and widely deployable. This
will include switching to a high performance object stor-
age back-end, improving the Custos authentication plugin
interface, producing plugins for additional authentication
primitives, and improving the efficiency of the Custos’s
ACC verification process. We would also like to enhance
the availability, redundancy, and distributed security fea-
tures of the Custos server by standardizing the manner in

12

which SSaaS-backed applications might leverage Shamir-
like secret sharing schemes. Finally, we plan to continue
our build-out of a variety of Custos-backed applications.
We look forward to continuing our development of the
Custos ecosystem and hope to present expansions of this
work in the future.

13

References

[1] R. Anderson. Why information security is hard - an
economic perspective. In Seventeenth Annual Com-
puter Security Applications Conference, pages 358–
365. IEEE Comput. Soc, 2001.

[2] Codenomicon. The heartbleed bug. heartbleed.
com/.

[3] R. Cox, E. Grosse, R. Pike, D. Presotto, and S. Quin-
lan. Security in Plan 9. In USENIX Security, pages
3–16, 2002.

[4] Dropbox. Dropbox. www.dropbox.com/.
[5] Dropbox. Dropbox security. www.dropbox.

com/security.
[6] C. Ellison. Establishing identity without certifica-

tion authorities. USENIX Security Symposium, 1996.
[7] EMC2. Pkcs #11: Cryptogrphic token interface

standard. www.emc.com.
[8] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno,

and H. M. Levy. Keypad: an auditing file system
for theft-prone devices. In Proceedings of EuroSys
’11, pages 1–16, New York, New York, USA, 2011.
ACM Press.

[9] Google. Drive. www.google.com/drive/
about.html.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security - CCS ’06, page 89, New York, New York,
USA, 2006. ACM Press.

[11] G. Greenwald and E. MacAskill. Nsa prism program
taps in to user data of apple, google, and others. The
Guardian, 2013.

[12] M. A. Halcrow. eCryptfs : An Enterprise-class
Cryptographic Filesystem for Linux. In Ottawa
Linux Symposium, pages 201–218, Ottawa, 2005. In-
ternational Business Machines, Inc.

[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file sharing
on untrusted storage. In Proceedings of the 2nd
USENIX Conference on File and Storage Technolo-
gies, pages 29–42, 2003.

[14] V. Kher and Y. Kim. Securing distributed storage:
challenges, techniques, and systems. In Proceedings
of the 2005 ACM workshop on Storage security and
survivability, page 9, New York, New York, USA,
2005. ACM Press.

[15] W. Koch. Gnupg. www.gnupg.org/.
[16] LastPass. Lastpass. lastpass.com/.

[17] P. Leach, M. Mealling, and R. Salz. RFC 4122: A
universally Unique IDentifier (UUID) URN Names-
pace. Technical report, 2005.

[18] P. Lorier. Heartbleed and private key
availability. plus.google.com/
106751305389299207737/posts/
WM4i4Rqxs5n, 2014.

[19] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file
system security. ACM SIGOPS Operating Systems
Review, 33(5):124–139, Dec. 1999.

[20] OpenSSL. Openssl. www.openssl.org/.
[21] Rackspace. Cloud keep. github.com/

cloudkeep.
[22] V. Samar. Unified login with pluggable authentica-

tion modules (PAM). In Proceedings of the 3rd ACM
Conference on Computer and Communications Se-
curity, pages 1–10, New York, New York, USA,
1996. ACM Press.

[23] A. Sayler. Custos server repo. github.com/
asayler/custos-server.

[24] A. Sayler. Encfs repo. github.com/asayler/
custos-client-encfs.

[25] A. Sayler. libcustos repo. github.com/
asayler/custos-client-libcustos.

[26] A. Sayler. Custos: A Flexibly Secure Key-Value
Storage Platform. Master’s thesis, University of Col-
orado Boulder, December 2013.

[27] A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, Nov. 1979.

[28] SpiderOak. Spideroak: Store. sync. share. privately.
spideroak.com.

[29] M. Szeredi. Fuse: Filesystems in userspace. fuse.
sourceforge.net/.

[30] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. CleanOS: Limiting
Mobile Data Exposure with Idle Eviction. In Pro-
ceedings of the 10th USENIX conference on Operat-
ing Systems Design and Implementation, pages 77–
91, 2012.

[31] A. Whitten and J. D. Tygar. Why Johnny can’t en-
crypt: A usability evaluation of PGP 5.0. In Pro-
ceedings of the 8th USENIX Security Symposium,
pages 679–702, 1999.

[32] D. C. Wilson and G. Ateniese. To Share or Not
to Share in Client-Side Encrypted Clouds. arXiv
preprint arXiv:1404.2697, 2014.

[33] T. Ylonen. SSHsecure login connections over the
Internet. Proceedings of the 6th USENIX Security
Symposium, 1996.

14

