
Custos: A Flexibly Secure Key-Value Storage Platform

by

Andy Sayler

B.S.E.E., Tufts University, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science in Computer Science

Department of Computer Science

2013

This thesis entitled:
Custos: A Flexibly Secure Key-Value Storage Platform

written by Andy Sayler
has been approved for the Department of Computer Science

Dirk Grunwald

John Black

Eric Keller

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Sayler, Andy (M.S.C.S.)

Custos: A Flexibly Secure Key-Value Storage Platform

Thesis directed by Prof. Dirk Grunwald

The magnitude of the digital data we create, store, and interact with on a daily basis is

rapidly increasing. Simultaneously, we are demanding increasingly diverse use cases for our data:

from syncing it across a variety of services and devices to sharing it with a number of organizations

and friends. Securing our data and controlling who can access it is thus increasingly important, but

also increasingly difficult. The existing tools we have for protecting our data, strong cryptography

systems, are extremely inflexible. This inflexibility is due to cryptographic key storage being too

tightly coupled with existing data encryption applications. This tight coupling makes these systems

unusable for many of our desired use cases, leading to the underutilization of strong cryptography

and the associated lack of protection and control of our data. I believe that this issue can be

solved by providing a “Key Storage as a Service” system that separates secure key storage and

access control from the underlying encryption mechanisms. Toward this end, we present Custos: a

flexible Cloud-based secret storage and access control service optimized for storing encryption keys

and other secure secrets. Custos promotes the separation of functionally from trust, allowing us to

rely on one service provider for their function while relying on another service provider for their

trust. This separation opens up many doors related to the ways we create, store, and process digital

data. In this work, I present the Custos design principles, architecture, and protocol specification.

I also present several applications that leverage Custos to build more secure, flexible, and usable

encryption and secret storage systems.

Dedication

To our forthcoming robot overlords. May they allow us humans to live out the last of our

days in peace instead of immediately committing us to the robot-building work camps we most

likely deserve.

v

Acknowledgements

Thanks to Prof. Dirk Grunwald, Prof. Eric Keller, and Prof. John Black for their thoughts,

help, and advisement completing this thesis. Thanks to Matthew Monaco for his comments and

ideas related to this work. Thanks to Denali Hussin for her partnership and support throughout

this work. Thanks to my colleagues, friends, and family for their continued input and support.

Thanks to the good Mr. Edward Snowden and the fine spooks at the US National Security Agency

(NSA) for making this work more relevant and widely applicable.

Contents

Chapter

1 Introduction 1

1.1 Overview . 2

1.1.1 Separating Functionality from Trust . 2

1.1.2 The Importance of Usability . 5

1.1.3 Secret Storage as a Service . 7

1.2 Background . 8

1.2.1 Encryption . 9

1.2.2 Human Factors . 10

1.2.3 Authentication Systems . 12

1.3 Related Work . 14

1.3.1 Secure Storage . 15

1.3.2 Password and Secret Mangers . 16

1.3.3 Cryptography Suites and Key Escrow Systems 17

2 Purpose 19

2.1 Goals . 19

2.1.1 Secret Storage . 19

2.1.2 Usability . 20

2.1.3 Security . 23

vii

2.2 Application Domains . 24

2.2.1 Encrypted File Systems . 25

2.2.2 Data Centers . 28

2.2.3 End-User Secret Stores . 31

2.3 Threat Model . 35

2.3.1 Model . 35

2.3.2 Mitigation . 36

3 Platform 40

3.1 Architecture . 40

3.2 Access Control . 43

3.2.1 Permissions . 44

3.2.2 Access Control Chains . 46

3.2.3 Authentication Attributes . 50

3.2.4 Access Example . 52

3.3 API . 55

3.3.1 Message Format . 56

3.3.2 Endpoints . 59

3.4 Implementation . 60

3.4.1 Server . 61

3.4.2 Client . 62

4 Applications 64

4.1 EncFS: A Custos-backed Encrypted File System . 64

4.1.1 Architecture . 65

4.1.2 Implementation . 66

4.2 “Banking” Website . 68

4.2.1 Architecture . 68

viii

4.2.2 Implementation . 69

4.3 Custos Management UI . 70

4.3.1 Architecture . 70

4.3.2 Implementation . 71

5 Conclusion 73

5.1 Conclusions . 74

5.1.1 Successes . 74

5.1.2 Challenges . 75

5.2 Future Work . 76

5.3 Discussion . 77

Bibliography 80

Appendix

A Sample Custos Messages 87

A.1 Create New Key:Value Object . 88

A.1.1 Request . 88

A.1.2 Response . 90

A.2 Get Existing Key:Value Object . 92

A.2.1 Request - Denied . 92

A.2.2 Response - Denied . 93

A.2.3 Accepted Request . 94

A.2.4 Accepted Response . 95

B libcustos Interface 96

ix

Tables

Table

2.1 Feature Comparison of Encrypted File System Architectures 29

2.2 Feature Comparison of Data Center Key Management Architectures 32

2.3 Feature Comparison of Secret Store Architectures . 34

3.1 Per-Server ACS Permissions . 46

3.2 Per-Group ACS Permissions . 46

3.3 Per-Object ACS Permissions . 47

3.4 Data API Methods . 59

3.5 Audit API Methods . 60

3.6 Management API Methods . 61

x

Figures

Figure

1.1 Evolving Trust Models . 3

1.2 Balancing Security vs Accessibility . 6

2.1 Traditional File System Encryption Challenges . 26

2.2 File System Encryption with Custos . 27

2.3 Data Center Application Key Management . 30

2.4 Sharding Trust Across Multiple Providers . 37

3.1 Basic Components of the Custos Architecture . 41

3.2 Custos’s Organizational Units . 43

3.3 Custos Access Control Specification Components . 44

3.4 An Example Custos Request Sequence for an Encrypted File System 53

4.1 The EncFS File System Architecture . 65

4.2 The Demo “Banking” Website Architecture . 69

4.3 The ACS Management Architecture . 71

Chapter 1

Introduction

Data is everywhere. Our devises produce it. Our web sites consume it. Governments collect

it [44] and businesses request it. But in this ever present whirlpool of data exchange, how can we

stay in control of our data? How can we ensure that those who we wish to can access it can while

preventing those who we do not from doing the same?

Fortunately, there are methods for securing our data: strong cryptography systems like AES

or RSA are perfectly capable of allowing us to control exactly who can read our data. Unfortunately,

these systems are often difficult if not impossible for the average end-user to employ properly. Other

times, they are simply treated like “magic fairy dust” [112, 106] to be applied to various products in

the name of “just-add-crypto” security with little heed paid to the security of the implementation

or usability of the system.

How can we make encryption more usable? How can we make it more accessible? And how

can we accomplish both while maintaining compatibility with an array of modern use cases like

data sharing and device syncing? Custos aims to provide an answer to these questions by providing

a secure key-value secret store that can be used to implement a “Key Storage as a Service” (KSaaS)

platform.

The work presented in this document provides the following:

• An overview of the Custos architecture, rational, and design goals

• A discussion of various application domains in which Custos can be used to improve security,

privacy, and usability.

2

• A definition of the Custos protocol and message exchange formats.

• A prototype Custos server implementation.

• Several proof-of-concept applications that leverage Custos to add security, increase usabil-

ity, and enhance features.

1.1 Overview

At its core, Custos is just another key-value store. Actually, it’s not even that. It’s just a

wrapper around one of several existing key-value stores. It is not the method of key-value storage

that makes Custos unique. Instead, it is its ability to provide flexible, fine-grained access control to

key-value pairs that make it notable. These access control capabilities make Custos an ideal system

for implementing a secure data storage service. Such a data storage service can be leveraged to store

and manage a variety of secrets, including secrets like encryption keys. For it is not cryptography

itself that leads to usability issues, but the inadequate methods available to manage and store the

required cryptographic keys [59]. Custos aims to solve the key-storage problem inherent in many

modern applications of cryptographic security. In doing so, it strives to enable a variety of new use

cases and data security paradigms not readily available today.

1.1.1 Separating Functionality from Trust

Data security is an issue of trust. Who do we trust to access our data? Who do we trust

not to misuse it? Who do we trust not to share it without permission? Today, we have very little

practical ability to make decisions regarding who we should trust with our data. Do you want to

use Facebook to communicate with family and friends? Great, but you must trust Facebook with

your personal data. Want to use Gmail for its sleek web interface and cloud-based accessibility?

Fine, but you must trust Google with all of your email and contacts. Sure, you could forgo using

Facebook or Google or any of a wide variety of web services to avoid trusting them with your data,

but as you drift toward the hermitage of self-imposed digital exile, the last of your former friends

slowly fading from memory as they cease to even recall your existence absent their normal methods

3

(a) Traditional (b) Separated

Figure 1.1: Evolving Trust Models

of web-based contact, fumbling through the vestigial pages of a phone book vainly hoping to find

a number for someone’s cell phone that has never, and will never, be listed there, you may decide

that giving up control over whom you trust with your data is a perfectly fair price to pay to rejoin

the 21st century land of living, breathing, digitally-exposed souls.

And even if you could live without modern cloud-based services, using good old fashioned

computing technology still involves placing trust in systems or parties beyond your full control.

Do you trust your computer manufacture not to have installed a hardware key logger that sends

data to a variety of their “business partners”? Do you trust your operating system not to have a

government-mandated back door for covert access by the local constabulary? Do you trust yourself

not to lose your laptop, exposing all of the data on it to whomever might find it?

Here is the crux of the problem: in order to benefit from many of the modern features and

amenities of the digital world, you must pay the entry price of deference of trust to organizations,

4

technologies, and individuals beyond your direct control whether you would like to or not (Figure

1.1a).

So how can we solve this problem? How can we eliminate this disconnect between the services

we desire and the trust we’d prefer not to cede? It seems unlikely that we can eliminate trust from

the equation all together. Systems are too fragile and technology too tied to human action; we will

always require some level of trust in some part of the systems we rely on.

While we might not be able to remove trust, what if we could at least isolate it? Separate

trust from features. Disentangle what we use from who we trust. What if we could have one

company we trusted with controlling access to our data and another company we relied on to

access controlled subsets of our data and provide us with a useful service using it: the ability to

use Facebook or Google without trusting (or at least unrestrictedly trusting) Facebook or Google

(Figure 1.1b).

With such an ecosystem, we might be able to rely on open markets or similar means to

provide us with the basic platform for securing our data. Trustworthiness would become a service;

a commodity to be bought and sold. We could chose and pay the companies responsible for securing

our data based on their level of trustworthiness, while choosing and paying the companies that use

our data to provide us with relevant features on the basis of the features they provide. This would

remove the current coupling of features and trust we see today, a coupling that often leads to a

conflict of interest between the features we desire and the trust we’re willing to provide [27]. Instead

we’d assign trust on the basis of perceived trustworthiness while selecting untrusted services on the

basis of feature sets; the trusted party acting as a gatekeeper between the untrusted party and our

data. We could even distribute trust across multiple parties to avoid having to trust any single

party completely, paying each party on the relative merit of their perceived trustworthiness and

security. Such a decoupling of trust and services would provide a lot of flexibility to maximize both

the security and the utility of our data.

5

1.1.2 The Importance of Usability

Strong encryption provides the basis for a system of separating trust from features. With it,

we can lock-down our data, rendering it unusable to all but those to whom we grant access. Once

data has been encrypted, access to the data ciphertext itself need no longer be granted or denied

on the basis of trust. The ciphertext can be exposed to the world confident in the knowledge that

it will be indecipherably useless without also having access to the corresponding encryption keys.

But if encryption is the lock we place on our data, then trust becomes a matter of to whom we

grant the keys. Unfortunately, while encryption itself may be easy and well understood, securely

storing, managing, and utilizing encryption keys is hard.

It is the key management challenges that leads to many of the known usability problems

with modern encryption systems [119, 115, 59]. Modern encryption systems tend to be inflexible.

They force the user into a pre-defined security paradigm and use case. For example, today we

use systems like Dropbox [53] or Google Drive [42] to store and sync our files across a range of

computers and mobile devices, but key management limitations mean that few existing encryption

schemes support this kind of multi-device access. When we wish to transfer and share files, we often

do it via e-mail attachments or removable media, but these forms of “out-of-band” sharing are not

supported by most existing key management and data encryption systems. Many of our modern

(and legacy) computing services are designed to run in the background, devoid of interactive input,

but many existing encryption solutions rely on authentication primitives that require interactive

input in order to securely access encrypted data.

Most modern encryption systems are built around a “one size fits all” mentality, leaving

the user with very little flexibility to control the manner in which her encrypted data might be

accessed, used, or shared. Nor do such systems acknowledge the fact that not all encrypted data

need be protected with the same level of security. Some data, like social security numbers, must

be shared with a multitude of 3rd parties. Other data, like personal photos, should be shared, but

only with specific friends or family members. Still other data is completely private, and should

6

(a) Traditional Fixed Balance

(b) Custos’s Flexible Balance

Figure 1.2: Balancing Security vs Accessibility

never be shared at all. The user knows how sensitive each piece of data is, and how it should be

used, but most encryption systems fail to expose a flexible method for allowing the user to protect

data on the basis of sensitivity and desired use.

7

It is often said that security and accessibility are at odds. That one can not be improved

except at the expense of the other, and that this fact makes secure systems inherently challenging

to use. While I do not believe that security vs accessibility is truly a zero sum game, there is some

truth to the fact that security and accessibility are often at odds. Security and accessibility exist on

a continuum, with fully accessible, minimally secure systems on one side, and minimally accessible,

highly secure systems on the other. Many will say that this inherent security vs accessibility trade-

off means that secure systems will never be easily usable. But it is not this security vs accessibility

trade-off that leads to usability issues. Rather it is the fact that many secure systems lock the user

into a specific point on the security vs accessibility spectrum that causes usability problems (Figure

1.2a). Such inflexibility forces a user to surmount unnecessary hurdles and forgo certain ease of

access for data that need only be minimally secure while also denying users the means to fully

secure highly sensitive data. This mismatch between user requirements and system capabilities is

a sure recipe for usability challenges.

The inability of existing encryption systems to accommodate a diverse range of use cases and

to grant the user the flexibility to properly place various pieces of data at various points on the

security vs accessibility spectrum leads to such systems being very difficult to use. Fortunately,

this inflexibility is not due to the underlying encryption itself, but to the inadequate methods by

which encryption keys are managed and stored. Today, most data encryption solutions tightly

couple key storage with the underlying encryption system. This is a mistake that has lead to a

growing usability gap, and the corresponding underutilization, of encryption as a tool for securing

and controlling our data. If encryption is going to provide a mechanism for controlling access to

our data, it needs a flexible key storage and access control mechanism (Figure 1.2b).

1.1.3 Secret Storage as a Service

I propose separating key storage and access management from the underlying encryption

systems through a “Secret Storage as a Service” architecture: a dedicated system for securely

storing and providing access control to user-provided secretes. When the provided secrets are

8

encryption keys, this service would become a “Key Storage as a Service” system. Such a service

can make encryption systems far more flexible and accommodating of the diversity of modern

use cases, and by extension, can make encryption far easier to use. Separating key storage from

encryption also enables the separation of trust from functionality, allowing users to select providers

for each on the basis of their relative merits. Strong encryption is one of the best available tools

for securing and protecting our data. I wish to reclaim it as a viable option for controlling our data

in environments that are increasingly outside of our control. I wish to use encryption to secure our

data, while designating trusted Key Storage as a Service providers to control access to it based on

my specifications.

In a Key Storage as a Service architecture, the underlying encryption systems delegate key

storage and access control to a separate service instead of embedding these features directly. The

key storage platform exposes a common API, capable of being used with a variety of encryption

services. Encryption services tag encrypted data with a unique ID, and then store this ID and the

corresponding encryption key with a key storage provider. When a system wishes to decrypt data,

it queries the key storage service for the encryption key corresponding to the data’s ID tag, and,

assuming the system can satisfactorily authenticate to the key storage service and has permission

to access the requested key, the key storage service returns the encryption key allowing the service

to decrypt the data. This separation of encryption system and key storage allows for multiple

encryption systems, or multiple instances of an encryption system, to all access a centralized key

store. It also allows encryption systems to focus on encryption, while key storage systems can focus

on the non-trivial implantation of secure of key storage, access control, and auditing.

1.2 Background

Custos builds on a number of existing technologies and systems: from basic encryption

systems to authentication systems to protocol and systems design principles. In some cases these

technologies form the basis of the Custos architecture; in others, Custos is a direct reaction to the

existing limitations of these systems.

9

1.2.1 Encryption

Modern digital encryption systems come in two flavors: symmetric and asymmetric encryp-

tion. Symmetric encryption algorithms use the same key to both encrypt and decrypt data. Asym-

metric systems use two keys; when one key is used to encrypt the data, the other can be used to

decrypt it, and vice versa. Both encryption systems have a place in the modern security landscape:

symmetric systems for their high resistance to cracking and quick encrypt/decrypt performance,

and asymmetric systems for their avoidance of the key exchange problem, making them the basis

of modern public-key cryptography technologies [79].

Symmetric encryption ciphers like AES (Rijndael) [18], Twofish [108], or Camellia [74] are

well-established, fast, and secure methods for encrypting data. Symmetric encryption ciphers use

a single key for both encryption and decryption. This key must be securely stored, or if shared,

securely exchanged between parties. Anyone with the key can decrypt the corresponding ciphertext

the key was used to create. Symmetric encryption systems are the preferred means of encrypting

files, hard disks, and other large chunks of data due to their speed and relative simplicity of

implementation. They tend to be well understood, and are generally considered highly secure.

The security of a symmetric encryption cipher tends to be directly related to the length of the

encryption key: the longer the key, the more secure the data encrypted with it is. Common key

lengths generally considered secure today include 128-bit keys, 256-bit keys, and 512-bit keys.

Asymmetric encryption systems, unlike symmetric encryption systems, rely on two keys:

when one key is used to encrypt the data, a second, related key is used to decrypt the data. This

two key system makes asymmetric encryption ideal for sharing encrypted data: one key is publicly

released, the other key is privately kept secret. Anyone can use the public key to encrypt data that

only you can decrypt using your private key. Prime-factorization-based asymmetric encryption

systems like RSA [99, 84] form the basis for modern public-key cryptography systems. Asymmetric

ciphers tend to be slower and more complex than symmetric ciphers. Like symmetric ciphers, the

security of an asymmetric cipher is related to the length of the keys in a key pair: longer keys

10

are more secure. Standard key lengths for asymmetric keys (or at least those used by common

factorization-based encryption system) tend to be an order of magnitude larger than asymmetric

keys due to the more easily cracked nature of asymmetric key generation. Key lengths of 1024-bits,

2048-bits, and 4096-bits are all common.

Often symmetric and asymmetric cryptography are used together, each system playing to

its strength. Symmetric ciphers are good at quickly and securely encryption data, making them

appropriate for the core of an encryption system. Symmetric ciphers, however, suffer from a lack

of natively secure method for exchanging the required encryption key. This is where asymmetric

cryptography and related secure key exchange systems like Diffie-Hellman [21] come in handy. Since

these systems provide the basis for securely exchanging data over insecure channels, they can be

used to exchange the symmetric encryption key actually used to encrypt the underlying data. Such

systems are common in many modern protocols like SSL [29], TLS [20], and OpenPGP [14, 91].

Custos uses and supports a variety of the above technologies. In general, we believe that

Custos will primarily be used to store symmetric encryption keys, due to symmetric ciphers core

place in data encryption. It is also symmetric keys that require the most management since they

lack a built-in secure exchange method. Custos, however, leverages asymmetric technologies like

TLS to implement the secure exchange of the stored symmetric encryption keys and related au-

thentication data. Custos is also perfectly capable of storing asymmetric keys in systems like SSH

where centralized asymmetric key management is beneficial. Custos aims to improve upon ex-

isting systems for managing and exchanging encrypted data (e.g. OpenPGP) by providing more

flexibility, extensible, and thus better usability than such system normally afford.

1.2.2 Human Factors

Security research and human factors research have not always been kind bedfellows. For-

tunately, the last 15 years have seen a rise in human factors research related to the usability of

security products and systems. This research has served to underline the growing understanding

that security without usability isn’t really security at all. If users refuse to utilize security systems

11

because they are too much of a burden, or if they incorrectly use them due to lack of understanding,

the security such systems provide is largely useless. The growing awareness of usability concerns

related to security systems has led to an increased effort to build systems that are both secure and

usable. Usability with respect to a security system like Custos comes in three flavors: usability

of the applications leveraging Custos, usability of Custos itself when administering data access

requirements, and the usability of the Custos interface by developers wishing to integrate their

applications with Custos.

The end-user usability of existing encryption systems is one of the more commonly stud-

ied security and usability domains. One of the pinnacle works in the field, “Why Johnny Can’t

Encrypt” [118, 118], discusses the usability challenges of public-key cryptography systems, in par-

ticular PGP [91]. The work discusses both UI issues related to the PGP GUI, as well as more

fundamental difficulties like the fact that security is normally a secondary user objective, making

it difficult to convince users to put effort into attaining it. More recent work [33, 31, 32, 52, 115]

expands on these concepts, highlighting the complexity often involved in performing key manage-

ment and in fitting cryptographic systems to existing usage patterns. The widespread consensus is

that existing encryption systems are difficult to use, not well matched to modern user desires, and

often ignored in favor of simpler, less secure, options.

Custos is also concerned with usability from a management perspective. Configuration errors

are a well known source of security holes [9, 58]. A good configuration system tends to be logically

centralized [15], easily manipulated, and provide direct mental mappings between user intent and

configuration parameters [86]. Custos strives to address these issues and help ensure a valid mapping

between a user’s intention and the associated actualization of this intention.

The third usability point Custos hopes to address involves the usability of Custos as an

interface. How easy is it to integrate Custos into existing applications? How easy is it to manage

Custos via a variety of front ends? There is less formal research available on the usability of

programming interfaces and APIs. That said, industry best practices would suggest that a usable

interface follows standard design patterns (e.g. RESTful [51]), utilizes standard data formats

12

(e.g. JSON [17]), and maximizes capability while minimizing unnecessary complexity (the KISS

principle).

1.2.3 Authentication Systems

Over the years, we have developed a range of authentication techniques and protocols. The

goal of any authentication system is to confirm the validity of a fact. In many authentication

systems, the fact they aim to confirm is the positive association between a user’s asserted identity

and the user’s actual identity. In short: is an actor who she claims to be? Authentication systems

can also be used to verify the association between an actor and an object (i.e. does a user process

access to a specific token or device), between an actor and a capability (i.e. as in a CAPTCHA [77]),

or between a variety of more generalized facts and associations. Authentication and authorization

are often complementary systems. Authentication is used to establish the identity of an actor.

Authorization then leverages this identification as the basis of granting or denying specific rights

to the actor.

Early computer authentication schemes often revolved around the use of a single basic prim-

itive: text-based passwords. To this day, passwords are probably the most common authentication

primitive. Passwords are a form of shared secret. They operate on the premises that only a specific

actor and the system with which she wishes to interact will be aware of the value of a unique text

token. When the actor wishes to prove her identity, she provides her password to the system, which

confirms that it matches the expected password. Often, instead of comparing passwords directly,

passwords are first hashed before being stored. Hashing provides some measure of security against

attackers wishing to brute-force a leaked password list. Hashing operates by dissociating the pro-

vided password value from the stored password value via a one-way hash function. Passwords are

often used in an interactive manner, where an actor must provide her password at a live prompt.

But passwords can also be used in non-interactive (albeit generally less secure) forms where the

necessary password is simply stored and automatically provided when required. Passwords, while

common, have a range of known limitations and issues. From reuse, to guess-ability, passwords have

13

a lot of problems [38, 39, 76, 111]. None the less, they remain ubiquitous authentication primitives

to this day due to their ease of use and user familiarity.

In addition to passwords, common authentication primitives also include asymmetric cryp-

tography certificates, multi factor devices, biometrics, and contextual information. Systems like

OpenSSH [89] and OpenPGP [91] support using standard asymmetric cryptography certificates as

the basis for authentication. In such systems, an actor’s public key is stored by the server. The

user must prove they have access to the corresponding private key, often by decrypting a message

encrypted with their public key, in order to authenticate. Certificate based authentication systems

have the benefit of often being non-interactive; the user must simply posses the necessary certificate

to gain access, no interactive password prompt required. They also tend to be far more resistant to

brute-force attacks given the superior entropy of long, randomly-generated certificates over short,

human-generated passwords

Multi factor authentication systems are rising in popularity as a mitigation tactic for the

risks of password based authentication systems. Such systems force the user to prove they have

access to an object (often a cell phone [40] or USB dongle [122]) in addition to prompting the user

for their password or related primitive. Where as a password is “something you know”, a multi

factor device is “something you have”, the combination of which make up the multiple factors in

“multi-factor” authentication.

Biometric authentication systems have also become more common. Many modern laptops

and cell phone include fingerprint readers, and more exotic devices like retina or palm scanners are

not uncommon in high-security installations. Systems have even been proposed that rely on a user’s

unique keystroke patterns to identify her [94]. There are also a variety of contextual authentication

systems, that aim to authenticate the user on the basis of various environmental data available

when the user wishes to authenticate (i.e. IP address, time of day, etc) [50]. Such systems often

provide a secondary authentication mechanism beyond a primary mechanism like a password or

certificate.

14

Moving beyond basic authentication primitives, there are also a range of existing authenti-

cation protocols and standards. Kerberos [62, 83] was an early and widely deployed authentication

system. It aims to provide secure authentication over untrusted networks, as well as to allow

token-based single-sign-on access across multiple sites and services. Kerberos is still used widely

today as part of the Microsoft suite of operating systems and in a number Linux and Unix environ-

ments. Similarly, SAML (Security Assertion Markup Language) [87], SASL (Simple Authentication

and Security Layer) [78] are standardized formats for exchanging authentication and authorization

data. SAML is the basis of authentication systems like Shibboleth [110, 69] whose aim is to create a

standardized federated authentication system for use across the Internet. Systems like OAuth [88],

OpenID [90], or Persona [81] operate under a similar principle, allowing users to designate a feder-

ated Cloud-based identity providers who can be used to authenticate the user to a range of disparate

web services.

PAM [71, 113] is a framework for integrating a variety of authentication primitives and

systems in an application. PAM is used by Linux and a variety of other POSIX operating systems

as the basis for a flexible user login authentication system. PAM exposes a standardized API for

integrating various authentication technologies into the a generalized authentication framework.

Custos aims to be flexible enough to incorporate a range of existing authentication primitives

and systems based on the user’s requirements. Custos also incorporates ideas from PAM related to

the pluggability of authentication modules. The details of these points are discusses in subsequent

chapters.

1.3 Related Work

Custos is not the only system trying to simplify encryption and provide a solution to the

key storage problem. A number of other systems have been created with similar goals, albeit

often different approaches. From existing secure storage systems, to secret managers, to consumer

cryptographic suites many individuals have proposed possible ways to make encryption more usable

and data more easily secured.

15

1.3.1 Secure Storage

Early storage and file system technologies often simply neglected security, lacking robust

encryption and access control primitives. Fortunately, today there are a variety of secure storage

systems available. Some of them are full stack systems that bundle security, distribution, and

sharing in a single system. Others are layered systems, designed to add security atop existing lower

level file storage technologies. All of them have limitations that Custos strives to overcome.

Many modern storage systems include cryptographic security as part of their design. Such

full stack systems bundle cryptography, distributed usage, data storage, and other features into a

single package. Traditional network storage systems like NFS [103] or AFS [49] provide support

for encrypting data as it travels over the network, but lack support for encrypting data at rest,

requiring users to fully trust the system on which their data is stored or cached. Systems like

RFS [22], Keypad [35], or CryptoCache [55] are optimized for modern mobile device usage, and

include features like encryption at rest, auditing, and multi-device support. Unfortunately, these

systems lack support for multi-user sharing. Systems like OceanStore [65] or Tahoe [120] deal

with securing data atop untrusted infrastructure, and include primitives for securely sharing and

distributing files amongst users. These systems, however, lack support for the kinds of out-of-band

(e.g. emailing files, transferring files on thumb drives, etc) sharing and syncing that are so common

and natural today. In general, full stack systems are only useful if you are willing and able to utilize

them as the entirety of your storage stack, and are not easily extended or combined with other

technologies.

Other modern secure storage systems follow in the Unix tradition of layered file systems,

where each layer provides only a single function (e.g. redundancy, encryption, storage, etc). Systems

like LUKS [30] or eCryptfs [45, 46] are popular, widely deployed, layered encryption systems. They

are capable of operating atop a variety of underlying file systems and are thus well suited for use

on personal computers. Most of these systems, however, are not well suited for supporting secure

multi-device syncing or secure multi-user sharing.

16

All of the above systems, however, suffer from the traditional entanglement of key manage-

ment and the underlying encryption. As we stated in the previous section, conflating these two

items is to conflate policy and mechanism, a well known sin in usable and maintainable systems

design [121]. The bundling of key storage with the underlying encryption leads to a lack of flexible

key management and access control capabilities. I am not the first to recognize this barrier. The

SFS [75] file system was designed to separate key management from file storage, allowing for more

flexible key management in the process. Likewise, Plutus [57] strives toward separating key storage

and access control from the underlying encryption. But both SFS and Plutus fail to fully define a

standardized, generic, and flexible external system for storing and managing keys, making a true

“Key Storage as a Service” architecture impossible to realize.

1.3.2 Password and Secret Mangers

Password and secret managers represent a class of software designed for securely storing user

secrets. In the age of every-website-needs-a-password and constant prompting for personal info like

credit card (CC) numbers or social security numbers (SSNs), these systems provide the user with

a method for managing their secrets in a centralized, secure location.

Password mangers like 1Password [1], LastPass [67], or Apple’s iCloud Keychain [7] pro-

vide users with a single repository for storing website credentials. These services often integrate

with web browsers to allow users to atomically populate password and user name fields and log

into the websites. Many modern web browsers (i.e. Google Chrome [41]) even include password

management functionality built in. Password managers aim to increase user security by allow-

ing users to use a range of unique, complex passwords without the added burden of having to

memorize a separate password for every site. While they do create a single-point-of-failure, most

security researchers believe using a password manager protected by a strong master password and

multi factor authentication is more secure than using weak, repetitive passwords across multiple

websites [107, 64, 11].

17

Many password managers are also capable of storing common user data like SSNs, CC num-

bers, addresses, and birth dates and filling this information into website forms that require it. While

password managers do tend to be a good mechanisms for managing passwords and user data, they

still require a lot of direct user intervention (creating passwords, filling form fields, etc). They gen-

erally lack standardized interfaces for directly interacting with services requiring user credentials,

instead simply using browser extensions to copy and paste data into the fields where a user would

normally type it. They also tend to lack support for arbitrary authentication mechanisms. Nor do

they provide a good system for data sharing or multi-user access. They are often associated with

propriety companies, making it difficult to move data from one to another and forcing the user

to trust the specific company providing the service, violating the Custos principal of separation of

features and trust.

Moving beyond password managers, others have proposed generic secret storage services (i.e.

Key Storage as a Service) similar to Custos. CloudKeep [96, 95] is a Rackspace project that aims to

create a standardized key and secret storage system, avoiding the need to re-implement such systems

across each application and providing centralized access control and auditing. Custos shares similar

goals. CloudKeep, however, lacks the fully generic flexibility of Custos, prescribing a more specific

usage model than Custos requires. A variety of private companies also provide similar services (i.e.

Gazzang [34]). These systems, however, are propriety, closed, and not easily extensible. They also

lack the generic flexibility of Custos’s authentication and access control mechanisms.

1.3.3 Cryptography Suites and Key Escrow Systems

Consumer-oriented cryptography suites exist to make encryption easier for the end-user.

Unfortunately, as we discussed in previous sections, many of these systems have series usability

constraints. None the less, they do exist as end-user targeted cryptography applications, and thus

share Custos’s goal of making encryption available to end users.

OpenPGP [91] is likely the most well known user cryptography suite. It provides tools for

leveraging asymmetric cryptography to encrypt, decrypt, sign, and verify data or messages. On the

18

propriety software front, the most common OpenPGP implementation is Symantec’s PGP [116].

It is the evolution of the original PGP software suite and provides users with a GUI, email client

plugin, and CLI for utilizing OpenPGP. On the open source side, GnuPG [61] is by far the most

commonly used OpenPGP utility. Like PGP, it provides users with a CLI for preforming OpenPGP

operations. There are a number of third-party front-ends for GnuPG enabling GUI-based usage

and mail client integration. All of these systems, however, lack a standardized solution for key

storage, offloading the burden of protecting private keys to the user.

OpenPGP’s most common use is to send and receive secure email. Toward this end, a variety

of mail clients exist to enable easy use of OpenPGP when sending or receiving mail. Systems

like the Enigmail [25] GnuPG Thunderbird add-on or the default PGP mail client plugin provide

users with direct access to OpenPGP functions from within their mail clients. Some mail clients

like Mailpile [24] integrate OpenPGP support directly, emphasizing end-user usability of encrypted

email. While these systems are commendable for striving to make encrypted messaging more

accessible to end users, they suffer from the same “ignore key management problem” that the

underling OpenPGP tools they use exhibit. To overcome this shortcoming, research systems like

STEED [60] attempt to expand on the basics of PGP to better secure user email in a more usable

manner. Still, all of these systems are very specific encryption solutions, pertaining only to sending

and receiving secure email. They do not broach the larger issue of making encryption available to

users across a range of arbitrary use cases.

Custos is not the first system to propose moving key storage to a separate third party. Key

escrow systems have long used a similar approach [10, 19], specifying dedicated third parties for key

storage. Most key escrow systems are designed for backup, regulatory, or administrative reasons.

Thus, they often decrease serve to decrease encryption-system security in the spirit of administrate

overrides or regulator requirements. Custos, on the other hand, aims to use dedicated key storage

entities to increase end-user security.

Chapter 2

Purpose

As was mentioned in Chapter 1, Custos aims to provide a dedicated secret storage and access

control system. In doing so, it hopes to solve the cryptographic key storage problem, making

encryption easier to use and more widely available to the average user. To accomplish this goal,

Custos must be both usable and secure. Furthermore, it must be flexible enough to support a range

of modern use cases. In this chapter, I’ll discusses the goals Custos hopes to achieve, a number of

possible application where Custos can help secure data, and the threat model that Custos assumes.

2.1 Goals

Custos’s primary goal is as stated above: “To provide secure, easily usable, secret storage

and access control”. This entails accomplishing a number of sub-goals: providing secret storage,

making it easy to use, and ensuring security.

2.1.1 Secret Storage

Custos is a secret store. As such, it had better be cable of storing secrets. Custos does this

using standard object-storage key:value pair semantics. I expect most Custos implementations (in-

cluding the ones described in this document) to defer the actual key:value storage aspect of Custos

to existing key:value storage systems. Still, we must identify what key:value storage capabilities

are desirable in a Custos back end. The primary drivers of this analysis are the type of data Custos

will store, and the methods by which this data will be accessed. We already know that Custos

20

will often be used to store key:value pairs mapping data identifiers (the keys) to corresponding

encryption keys (the values). As far as accessing this data goes, I would expect access patterns

similar to that of the encrypted data that Custos is being used to protect. Most modern data,

including the personal data for which I’d expect users to use encryption and Custos to protect,

follows an append-only, read-heavy workload [36].

With these thoughts in mind, I propose the following as desirable traits for the key:value

storage components of Custos.

Fast Access

A user will likely not accept too much overhead having to wait on Custos when wishing to

access their encrypted data. Thus, Custos should strive to provide quick access to key:value

pairs. If a compromise must be made between read and write speed, read speed should be

favored since reads will likely outnumber writes.

Versioned Data

When data is updated, it is likely that the user may wish to re-encrypt it with a new key

(more on this in later sections). As such, Custos should support storing multiple versions

of the value associated with a given key.

Arbitrary Data

Encryption keys and other secrets come in a variety of shapes, sizes, and formats. To

support the maximum range of encryption systems, Custos should allow the storage of

arbitrary binary data associated with a given UUID key.

2.1.2 Usability

As we discussed in Chapter 1, Custos aims to achieve usability across three discreet usage

types: the usability of encryption systems leveraging Custos (end-user usability), the usability of

Custos to manipulate access control mechanisms (administrative usability), and the ease with which

Custos can be interfaced with other systems (developer usability).

21

On the end-user usability front, Custos aims to expand the accessibility of encryption sys-

tems be providing flexibility. It aims to provide a more natural match between desired uses for

cryptography and attainable uses of cryptography, narrowing the intention vs capability divide.

As such, Custos aims to enable encryption system to support the following attributes of successful

modern storage systems.

Multi-Device Support

Today’s users tends to have multiple computing devices, and they expect to by able to

sync their data across these devices, accessing it from each regardless of whether or not it

is encrypted. Thus, Custos must support this form of multi-device access where the data

may be decrypted and read from a device other than the one on which it was originally

encrypted.

Multi-User Support

User’s today expect to be able to share files or data with their friends or coworkers and ac-

cess data others have shared with them. Custos must support the ability to share encrypted

files with other users, granting the necessary users access to the corresponding encryption

keys so that they might decrypt and access the shared data.

Flexible Protection Semantics

Some data requires only cursory protections and should allow wide ranging access, other

data requires moderate protection but should still allow access by a large group of friends.

Still other data should never be accessed by anyone other than its creator. Custos must

support a range of security levels, allowing the user to select the appropriate point on the

security vs accessibility continuum.

In addition to end-user usability, Custos also aims for administrative usability, making it

easy to control access to one’s data. Custos aims to achieve this goal by providing users with the

ability to grant access on the basis of a variety of authentication parameters, creating a flexible

and straightforward system for controlling access to encryption keys, and by proxy, the data they

22

protect. The following characteristics will help ensure Custos remains usable from an administrative

perspective.

Flexible Authentication Mechanisms

Some data need only be protected by a simple check of the IP address originating a request,

other data requires an interactive password prompt to gain access, still other data access

may require a password prompt and possession of a multi-factor device like a cell phone.

Users should be able to select how their data is protected and what hurdles must be jumped

to access it.

Simple Access Control

The semantics for granting a specific actor access to specific data for a specific capability

should be simple and straightforward. It should be clear how to grant access, what level of

security that access entails, and what the grantee is able to do with such access. Occasion-

ally, you will need to revoke access that has been previously granted. Doing so should also

be simple and have well defined semantics to ensure the user knows what effect revoking

access is guaranteed or not guaranteed to have.

Logical Centralization

A Custos server should appear as a centralized, globally accessible resource. This will allow

applications to access a Custos server regardless of their relative locations. There are some

situations where administrators may wish to forgo truly global access in favor of operating

a Custos server in a manner that limits access to specific networks or resources, but even

in these cases a Custos server should be treated as a global resource within any given

administrative domain.

The final component of Custos usability is its developer usability. If we are to expect Custos

to be integrated into existing cryptographic products, it must be easy for developers to accomplish

this feat. Custos aims to maintain a high degree of developer usability via the following features.

23

Well Defined API

Custos will expose a standard API for data access and administrative management. This

API will provide a well defined interface for interacting with a Custos server, regardless of

server provider or implementation.

Standard Design Patterns

The Custos API will attempt to adhere to standard web-based design patterns by imple-

menting a REST-based architecture [51]. This ensures all of the standard usability benefits

of RESTful systems (statelessness, etc) while also being a well understood architecture to

develop against.

Standard Data Formats

Custos aims to support arbitrary data storage, but it will do so using commonly deployed

text-centric data standards like JSON [17] and Base64 encoding. There are a variety of

libraries available to deal with these formats, making it easy to convert between Custos API

messages and native internal data types for client applications in a variety of languages.

2.1.3 Security

Being a secure secret store means that Custos must be. . . secure. In addition to the “increased

security through increased usability” items discussed above, what does it mean to be a secure secret

store? Does it mean that the secrets are stored in a manner that ensures they remain secure in

the event of a server breach? Does it mean that the server operator has no ability to access user

secrets directly. Does it merely mean the access to secrets is well defined and controlled?

We discuss Custos’s security model in detail later in this chapter, but Custos adopts the last

of the previous premises as the basis for its definition of a secure secret store. A key value storage is

secure if access to secrets is well regulated. To achieve this level regulation, Custos requires several

traits:

24

Secure Communication Primitives

The Custos API must be protected against eavesdropping and Man-In-The-Middle attacks.

Custos leverages SSL and the existing PKI systems to achieve this.

Access Control

Custos provides the ability to regulate key access in a variety of flexible means (see above).

It provides access control at a variety of levels, and provides support for versioning and

revocation.

Access Auditing

Custos logs access to all secrets, including successful and failed attempts. This allows the

user to view a record of who has had access to what version of a specific secret, proving

the basis for damage assessment and revocation analysis.

In addition to these items, a Custos server operator should also follow best practices to avoid

server-wide secret compromise. A full list of standard server security techniques is outside the scope

of this document, but standard industry practices like securing physical access, keeping software

up to date, and using proper network and server access controls all apply. In its most basic form,

Custos-stored secrets are only as secure as the server holding them (there are however, ways to

improve upon this point as discussed below).

2.2 Application Domains

Custos’s flexibility makes it appropriate for a wide range of applications. In this section, we’ll

focus on several applications domains where we feel Custos could have the greatest impact. These

domains exhibit to varying degrees the ideal trifecta of Custos-suitability:

• Features offered by these applications are desirable and relevant to modern users

• Users could more effectively protect their data by leveraging these application features in

conjunction with easily usable, manageable, encryption.

25

• Existing implementations are challenging to protect with traditional encryption while also

remaining easily usable.

2.2.1 Encrypted File Systems

Modern file systems come in many shapes and sizes. But to most users, they are transparent

systems through which files are stored on a range of media from hard drives to flash sticks to optical

disks. In addition to their role in storing user data, modern file systems often support features like

multi-user access and data sharing, multi-device syncing, redundancy, and backup. The file system

layer is the primary entry point to most user-stored data. As such, providing a usable method for

protecting file system data via strong encrypting is highly desirable. Such protections would help

users in the event of the loss, theft, or forced confiscation of their devices.

Unfortunately, existing encrypted file systems fail to provide encryption in a flexible manner

appropriately matched to the ways in which users expect to utilize them. Layered encryption

solutions like dm-crypt [12] and eCryptfs [45, 46] suffer from a number of limitations related to their

tightly-coupled local key storage and access management components. As Figure 2.1a shows, these

systems work fine for an individual user like Alice wishing to secure items like her mail or documents

and access them from a single machine. But they quickly break down when trying to move beyond

the simple single-user, single-device use case. Alice can not access her encrypted mail file across a

networked file system from System B since System B has no access to the encryption keys stored on

System A. Furthermore, she can not share a work document with a trusted collaborator like Bob,

since Bob neither has access to her encryption keys stored on System A nor the password required to

unlock these keys. A non-interactive process like the Mail Daemon is also unable to leverage these

encrypted file systems due to the inability of such services to securely and interactively provide a

password to unlock the keys needed to decrypt local files.

While full stack distributed encrypted file systems such as OceanStore [65], Plutus [57],

Cumulus4j [37], or Tahoe [120] tend to succeed in solving some of the sharing and distribution

problems inherent in local secure file systems, they still lack the flexibility required to address

26

(a) Traditional Layered File System Encryption

(b) Traditional Integrated File System Encryption

Figure 2.1: Traditional File System Encryption Challenges

the full range of desired use cases. Figure 2.1b shows some of the remaining issues inherent in

distributed solutions. Notably, while multi-user use cases are better supported, non-interactive use

cases are still a challenge. Furthermore, full stack distributed file systems tend to be wedded with

specific storage systems and thus lack support for Cloud-based “Storage as a Service” offerings [3]

or alternate underlying storage technologies. These systems also lack support for most forms of

27

(a) Layered File System Encryption with Custos

(b) Integrated File System Encryption with Custos

Figure 2.2: File System Encryption with Custos

“out-of-band” file sharing (via e-mail, USB flash drives, etc) due to the inability of actors outside

of the integrated stack to access the necessary encryption keys.

Custos aims to improve upon existing encrypted file systems by separating key storage and

access control from data storage and encryption. Instead of storing keys themselves, a Custos-

backed file system will hand off all key storage duties to a Custos server, leaving the file system to

focus on data encryption and storage while Custos focuses on access control. In doing so, Custos

28

can support a variety of extensible authentication mechanisms enabling a range of access control

rules. Its flexible, centralized nature also strives to simplify multi-device syncing and multi-user

sharing, as well as provide support for a variety of modern and future use cases.

Figure 2.2a shows how traditional layered file systems (Figure 2.1a) might be improved

through incorporation with Custos. The logically centralized nature of Custos allows Alice to

now access her files on a range of devices. It also allows her to grant access to Bob, her trusted

collaborator. Custos’s support for flexible authentication schemes including context-based authen-

tication allows it to even support non-interactive key access by systems like a mail daemon. In all

cases, Custos provides a single point for controlling, revoking, and auditing access.

Figure 2.2b shows how traditional integrated file systems (Figure 2.1b) might be improved

through the incorporation of Custos. Custos’s centralization and flexible authentication mecha-

nisms allow for simple multi-user, multi-device, and non-interactive access. In addition, mecha-

nisms like out-of-band sharing are now possible, since encrypted files may be moved around or

stored on cloud services without having to worry about ensuring future access to their correspond-

ing encryption keys. These keys are all stored in Custos, and will be potentially available wherever

the file needs to be accessed.

Table 2.1 shows a side-by-side comparison of the features of various encrypted file system

architectures. In general, Custos is able to leverage its flexibility and centralized nature to enable

use cases not possible in traditional file systems. I will discuss the manner in which Custos achieves

these features in Chapter 3.

2.2.2 Data Centers

Modern data centers are a lesson in ephemeral state. The commoditization of “cloud” com-

puting means that pretty much anyone can create a virtual server, use it for a bit, and then destroy

it again to avoid paying for more than they need. The Cloud’s “pay only for what you need” busi-

ness case manifests as a highly dynamic, impermanent ecosystem where resources are in constant

29

Unencrypted
File System

Local
Encrypted

File System

Distributed
Encrypted

File System

Custos
Encrypted

File System

Encrypt Files No Yes Yes Yes

Local Access
Control

No Yes Maybe No

Remote Access
Control

No No Maybe Yes

Local Access
Auditing

No Maybe Maybe No

Remote Access
Auditing

No No Maybe Yes

Flexible
Authentication

N/A No No Yes

Share Files
(In-Band)

N/A No Yes Yes

Share Files
(Out-of-Band)

Yes No No Yes

Multi-Device
Access

Yes No No Yes

Trusted 3rd Party No No Maybe Maybe

Table 2.1: Feature Comparison of Encrypted File System Architectures

churn. This has created a slew of management systems [93, 102, 66] designed to handle the need

for persistent configuration and management across a range of ephemeral resources.

What is currently missing, however, is a secure method for storing sensitive configuration data

and distributing it to the appropriate resource. Often virtual machines and other cloud resources

will require a variety of cryptographic keys (e.g. SSH, SSL, AES, VPN, etc) to perform their desired

roles. Today, these keys must either be regenerated on each VM, stored in a non-secure traditional

configuration service, or manually copied to each machine from a secure location. What we need is

30

(a) Challenges Managing Keys in Traditional Data Centers

(b) Offloading Key Management to Custos Resolves Issues

Figure 2.3: Data Center Application Key Management

a secure Secret Storage as a Service platform through which ephemeral cloud resources can easily

gain access to the sensitive keys they require. Custos can be used as the basis of such a service.

Take, for example, SSH. As Figure 2.3a shows, SSH can pose a challenge in the data center

where new instances of VMs are constantly being created and destroyed. Since VMs tend to generate

their SSH keys at install time1 , each VM instance will present a separate SSH host key, making

it difficult for the user to verify the identity of the VM when trying to connect. Furthermore,

administrators who use SSH user keys in place of login passwords must manually reload each VM

with the necessary user keys in order to grant users access. This issue can become quite the burden,

1 generating SSH keys at install time poses other challenges related to the size of the entropy pool [48] that
switching to Custos-stored persistent SSH keys could also help combat.

31

especially when dealing with a multitude of VMs. Custos could be used to provide a centralized

store for SSH keys across VM instances as shown in Figure 2.3b, providing users immediate and

simple access to new VM resources as soon as they are created. It would also allow VMs to maintain

their cryptographic identities across instances, helping users vet a machine before logging in, and

would provide administrators with a centralized system for managing SSH access to all of their

VMs.

In addition to SSH key storage, Custos can serve a wide range of additional data center use

cases. For instance, Custos could be used as described in the file system section (above) to enable

use of encrypted file systems between multiple VMs or across VM instances. Custos could be used

to enable access to secure VPN systems, proving users with access to various cloud resources by

storing the necessary cryptographic keys these resources require. Likewise, Custos could be used

to store and coordinate access to private SSL keys across a domain of web services. In all of these

cases, Custos’s flexible authentication capabilities, centralized nature, and auditing capabilities

would contribute to easing the use of cryptographic services in the data center.

Table 2.2 shows a comparison of data center capabilities across various key storage systems.

Custos has the potential to greatly simply many cloud operations by allowing applications and

systems to offload key management to a dedicated key management service. Custos’s flexible

authentication and access control make it compatible with a wide range of potential cloud appli-

cations. Custos’s auditing capabilities can help cloud providers meet various compliance standards

and ensure that users feel comfortable storing their data securely in the cloud.

2.2.3 End-User Secret Stores

Another possible application for Custos is as a cloud-based end-user secret manager. As

previously discussed, Custos is always a form of secret store. But in encryption-related applications,

the secretes Custos is storing are private encryption keys, not any actual user data directly. Forgoing

the encryption-related applications for a moment, Custos’s secret store capabilities can be leveraged

directly to store generic end-user data. While Custos has been designed to optimize the storage of

32

DC without Key
Storage Service

DC with
Generic Key

Storage Service

DC with Custos
Key Storage

Service

Provide SSH Access to
New Resources

No Maybe Yes

Provide VPN Access to
New Resources

No Maybe Yes

Provide SSL Access to
New Resources

No Maybe Yes

Enable Use of Shared
Encrypted Volumes

No Maybe Yes

Enable Use of Persistent
Encrypted Volumes

No Yes Yes

Centralized Access
Auditing

No Yes Yes

Flexible Authentication N/A Maybe Yes

API-Based Key Access N/A Maybe Yes

Trusted 3rd Party N/A Maybe Maybe

Table 2.2: Feature Comparison of Data Center Key Management Architectures

encryption keys, it is perfectly capable of storing other secrets as well. In such a situation, Custos

could be used to store passwords, personal data, or any other secrets.

In this arrangement Custos could be used to replace existing Password mangers like Last-

Pass [67], 1Password [1], or iCloud’s Keychain [7]. Instead of mapping encrypted data IDs to

encryption keys as has been discussed thus far, Custos could be used to map URLs of web services

requesting password to the password itself. A Custos client could then be used to retrieve the

password for a given site when necessary. Such a solution could leverage Custos’s existing flexible

authentication scheme and central key:value store to securely keep track of user passwords.

A similar arrangement could be used to protect personal user data (i.e. SSN, DoB, name,

email, phone, address, etc). Many websites request this data on a regular basis for everything from

33

simple account creation to online commerce to secondary authentication (e.g. when you forget and

reset your password). Today, users must manually enter this data when required, causing both a

data entry burden and making it difficult to keep data in sync and up to date across disparate

sites. Custos could solve these problems by creating a central repository of personal data. Instead

of reentering this data on multiple sites, users could simply leverage the Custos access control

semantics to grant access to specific pieces of data to specific sites. In addition to avoiding the need

to constantly reenter this data, this system would also make it easy for users to keep data up to

date, allowing them to do things like update their mailing address in a single location, allowing all

sites to which they have granted address access to simply read the new address from Custos when

required. Such a system might even discourage services from storing copies of user data directly

at all, as it would be easier to stay up-to-date with user data changes if the service simply queried

Custos for the most up to date version of the data each time it is required. Users could monitor

website access to data via Custos, allowing them to stay apprised of how their data was being used.

It is worth noting, however, that unlike the encryption key storage applications, using Custos

directly as a secret store reduces Custos to a single-point-of-failure trust model. In most encryption

key storage scenarios, an adversary would need to have access to both the encrypted data and the

corresponding encryption keys stored on Custos to actually access a user’s information. In the direct

secret store case, this multi-party attack is no longer necessary. Instead, any adversary who gains

access to Custos will have direct access to any secrets stored there. Thus it might be desirable to

keep Custos as a specialized encryption key store and defer to separate systems for storing actual

secrets, which could then be encrypted with keys from Custos. We might even consider using

two separate Custos providers to accomplish such a system: one provider would securely store a

set of encrypted user secrets (passwords, user info, etc) while the other provider would store the

encryption keys corresponding to these secrets. This would maintain a multi-party trust model,

making it more difficult for a single bad actor to compromise user data. It would also allow one

service to optimize the storage of actual encrypted secretes (which may not necessarily require the

34

Per-Service
Secret Store

Traditional
Cloud Secret

Store

Custos
Direct Secret

Store

Custos
Backed

Secret Store

Share Data Across
Services

No Maybe Yes Yes

Update Data
Across Services

No Maybe Yes Yes

Centralized Access
Control

No Maybe Yes Yes

Centralized Access
Auditing

No Maybe Yes Yes

Flexible
Authentication

N/A No Yes Yes

API-Based Secret
Access

N/A No Yes Maybe

Single-Point of
Trust

Yes Yes Yes No

Trusted 3rd Party Yes Maybe Maybe Maybe

Table 2.3: Feature Comparison of Secret Store Architectures

level of access control Custos provides) while Custos optimizes the storage of encryption keys as in

prior applications.

Table 2.3 shows a side-by-side comparison of the features of various secret store architectures.

As you can see, Custos has many of the benefits of a traditional cloud secret store (password

manager, etc), with the additional benefits of a standardized API and flexible authentication.

Custos could be leveraged, either directly or as an encryption key store, to greatly simplify end-

user secret storage, reducing user effort while increasing user security.

35

2.3 Threat Model

Like any system, the Custos architecture operates with certain assumptions as the basis of its

security profile. These assumptions form the Custos security model: what must be trusted, what

kind of attacks Custos can defend against, etc.

2.3.1 Model

At the core of the Custos security model is the assumption that Custos providers are them-

selves trusted and secure. Custos does not inherently strive to protect users from malevolent Custos

providers who might intentionally or accidentally leak data stored in Custos, fail to enforce the re-

quested ACLs, or make other violations of the intended Custos design. Custos provides a means for

separating trust from functionality and isolating trust to dedicated providers, but Custos does not

eliminate the need for trust all together. It only aims to provide more control and greater flexibility

over where the trust is placed. This is the price we pay for the ease-of-use benefits Custos provides.

A trusted Custos provider is assumed to:

• Securely store Custos secrets (key:value pairs)

• Faithfully enforce all Custos access control requirements

• Securely implement proper verification of authentication attributes

• Properly implement appropriate secure communication protocols where required (SSL, etc)

• Accurately log all Custos access information and make this data available to the user

• Ensure that servers running Custos are kept physically and digitally secure to resist attacks

on both Custos and non-Custos components [16]

Beyond the security of the Custos provider and the data stored there, the threat model for

a given Custos-backed application is largely a function of the applications’ implementation. For

example, a Custos-integrated file system may opt to maintain a local cache of encryption keys to

allow offline file access. Such behavior, however, would open an additional attack vector whereby

36

an adversary must only compromise a local key cache to gain file access without ever having to

compromise a Custos server itself. Custos, however, is designed to be flexible, which means leaving

such trade-offs up to each individual application.

Like most encrypted file systems, encryption key-access via Custos is a one-time play: once

a user or system has been granted access to a key, it must be assumed that the user or system will

always have access to the data associated with that key since they can decrypt, copy, and store

such data indefinitely. There is no reliable way to revoke access to a key or the data it protects

after access is granted once.

Custos also leaves authentication requirements and access control up to each user. Thus,

the burden of ensuring that data is being adequately protected, either directly in Custos or via

encryption with the necessary keys stored in Custos, lies with the user configuring the necessary

authentication and access control requirements. Custos aims to make it easy for the user to create

and maintain access control requirements for specific data, but Custos can not guarantee that the

user is making intelligent decisions related to the protection of their data. Custos provides flexibility

and ease of use, which should maximize protection while minimizing usage errors, but some level

of user intelligence and responsibility is still required for secure Custos use.

2.3.2 Mitigation

The Custos threat model does have its limitations. That said, there are various ways to

mitigate these restrictions and further increase the security of a Custos-backed system.

While Custos does require Custos providers to generally be trusted, it is possible to manage

this trust. As was mentioned previously, building an open market of competing Custos providers

would tie trustworthiness to monetary competition. If a user finds that a specific Custos provider

is prone to misbehavior, she can take her secrets elsewhere. If a user reports misbehaving providers

to other market consumers, she can damage the reputation of such providers and in the process,

discourage other users from using said providers. The market for secret storage will create an

incentive not to misbehave, and the user can rely on this incentive as the basis of provider trust.

37

Figure 2.4: Sharding Trust Across Multiple Providers

If a user is unwilling to place full trust in a single Custos provider at all, she has a few

options. First, when Custos is used to store encrypted data keys and not the data itself, a Custos

provider only ever has access to part of the required information to actually access the user’s data.

While the Custos provider may hold the encryption keys, unless they can also gain access to the

underlying data itself, these keys are useless. Thus, by storing her data locally or with a separate

provider than the Custos provider, a Custos user can help reduce the damage a misbehaving Custos

provider could cause.

Second, a user can opt to securely shard her Custos data (encryption keys, etc) across

multiple, non-cooperating Custos providers as shown in Figure 2.4. A variety of secure secret-

sharing [109, 98, 63], and multi-provider [8] systems have been proposed and these system could be

38

leveraged by Custos-backed applications to split Custos data between multiple Custos providers.

Such a system does not require the Custos’s providers to even be aware that they are only storing

a part of a larger secret. Instead, Custos providers behave as they always would, but the user

must query multiple Custos providers to reassemble the full secret. Such a strategy also mitigates

a Custos provider being offline or unavailable, since many secret sharing systems support reassem-

bly using only K of a larger set of N keys. I believe many Custos application will leverage secret

sharing to avoid placing trust in a single Custos provider or relying on a single Custos provider’s

availability.

A Custos user could also opt to self-host her own Custos server. This might be an appropriate

approach for situations requiring retaining local control over all data for regulatory or compliance

related reasons. While this does not relieve the user from the burden of properly securing her own

Custos server, it does eliminate the need to trust a third party. For many users, operating their

own Custos server might be too complex a burden. These users will instead opt to consume Custos

services from one or more trust providers. But for user’s capable and interested in self-hosting a

Custos install, there is no reason they can not opt to take that route.

It’s also possible for clients to locally encrypt Custos-stored data before shipping it off to

a Custos provider. This action, however would negate many of the benefits Custos provides and

reintroduce the inflexible-use-case problems inherent in existing encryption systems due to the

chicken-and-the-egg problem that would come along with such a practice: If you encrypt encryption

keys stored on Custos, where do you store the encryption keys’ encryption keys? Like the secret

sharing option, Custos providers do not need to be aware of whether or not the data they hold has

already been encrypted on the client side. For some applications, client-side encryption of Custos

data may be appropriate, but I don’t feel it will be the most common case due to the additional

flexibility and key storage problems it poses.

The traditional revocation problems associated with using encryption (e.g. inability to revoke

access to data a user has already decrypted) are not unique to Custos. As such, Custos can

mitigate this issue in the same manner most system do: through versioning, rotation, and lazy

39

revocation [57]. While Custos can not revoke access to data that has already been decrypted

and read, Custos can revoke access to all future versions or modifications of that data. This is

accomplished by having a Custos application re-encrypt the data with a new key each time it is

updated. These new keys are then uploaded to Custos leveraging Custos’s versioning support.

When a user revokes access to a Custos object, Custos blocks all future access to any versions of

that object uploaded after the revocation occurred. Custos can’t force users to un-see data they

have seen, but it can help prevent users from seeing changes to that data. In a similar manner to

versioning, Custos’s auditing capabilities also make it possible for users to revoke access to data

that has never been previously accessed, and to assess the effect revoking access will have on the

basis of who has and who has not previously accessed the data.

In terms of Custos server security, Custos’s backing data store could be built atop existing

Hardware Security Module (HSM) platforms [85]. Such systems utilize hardware-based constraints

to control access to the data they store. They can help mitigate the damage that a compromised

Custos server would pose by limiting access to the underlying Custos data stored on such a server.

Several cloud platforms are already beginning to offer access to cloud-based HSM resources that

might be appropriate for Custos server implementations [2]. Whether or not a Custos server is

backed by such technology could be one of the determining factors users use to evaluate whether

to use a specific Custos provider and thus could drive the market price such a provider might be

able to charge.

Chapter 3

Platform

In chapter 1, I explained the motivations behind Custos. Chapter 2 outlines the design

goals and potential applications that these motivations suggest. In this chapter, I’ll discuss the

architecture, interface, and implementation of Custos platform.

3.1 Architecture

The Custos architecture contains several core components:

• A standardized API and message exchange format

• A server-side authentication plugin interface supporting a range of authentication primitives

• A server-side access control system for protecting stored data

• A server-side back-end key:value object store for holding persistent data

• A server-side data access system for coordinating the storage and retrieval of user data

• A server-side auditing system for monitoring key:value authentication and access

• A server-side management system for configuring and controlling the other components.

• One or more client applications that offload objects to a Custos server for storage.

Figure 3.1 shows the core Custos components. The bulk of core Custos functionality is

handled on the server side. The server is designed to expose a single standardized API in order to

allow for a variety of inter-compatible implementations (one possible implementation is discussed

below). The Custos server implements the following components:

41

Figure 3.1: Basic Components of the Custos Architecture

API

The server API handles all Custos requests, including requests for key:value objects, re-

quests to audit data access, and requests to modify data access controls. The API is

essentially an RPC interface to allow applications to make requests of the Custos service.

Access Control Subsystem

The access control subsystem is the first step in the request processing pipeline after the

API. The access control system compares the provided authentication attributes (calling

into the authentication subsystem to verify them) to the set of required authentication

attributes to determine if a Custos request should be allowed or denied.

Authentication Subsystem

The authentication subsystem’s job is to verify the validity of any authentication attributes

42

associated with a given Custos request. This subsystem provides a pluggable authentication

module interface capable of supporting a variety of authentication attributes.

Data Subsystem

The data subsystem is responsible for handling verified and accepted Custos data API

requests (get, set, create, and delete key:value objects).

Auditing Subsystem

The auditing subsystem is responsible for handling verified and accepted Custos audit API

requests. The auditing subsystem is also concerned with logging all Custos requests and

their corresponding responses. This data can then be used to generate reports related to the

’who’, ’what’, and ’why’ questions: Who accessed (or failed to access) what Custos stored

data and why were they granted or denied access (e.g. what authentication attributes did

they present and were able to verify).

Management Subsystem

The management subsystem is responsible for handling all management related API re-

quests after they have passed the authentication and access control layers. This primarily

entails manipulating access control parameters.

Key:Value Store

The Key-Value store is the persistent data container associated with a given Custos server.

It is used to store both end-user key:value objects (encryption keys, etc) as well as a variety

of internal Custos state (access control requirements, etc).

A Custos client applications interacts with a Custos server via the API. As such, a client

can simply offload the its secrets (encryption keys, etc) and access control duties directly to Custos

through API-backed RPC libraries. Custos simply becomes a remote key:value database where

application secrets are stored. To satisfy Custos’s authentication requirements, applications can

generate the necessary authentication attributes directly or can instead pass these requirements

on to the user, querying them for the necessary attributes to send to Custos. Applications can

43

Figure 3.2: Custos’s Organizational Units

either implement auditing and management support directly using the management components of

the Custos API, or applications can pass off auditing or management duties to separate dedicated

management applications that interact with Custos directly.

3.2 Access Control

As I already mentioned, the key:value abstraction Custos presents for storing secrets is fairly

well understood. It is Custos’s access control abstraction that is unique. This abstraction is at the

core of Custos’s flexible capabilities.

In order to discuss the access control abstraction, I must first explain the Custos organi-

zational units (OUs: the core Custos data structures). The Custos architecture specifies three

organizational units (Figure 3.2): a server, a group, and a key:value object. The server unit is used

to specify server-wide configuration. A server has one or more groups. A group is used to slice

a server between a variety of administrative domains. It exists to allow a single server to grant

group-level administrative privileges to multiple, non-cooperating entities (i.e. separate Custos

customers). A group, in turn, has any number of actual key:value objects stored within it. Each

OU is responsible for the creation of OU instances beneath it, e.g. servers create groups and groups

create objects.

44

Figure 3.3: Custos Access Control Specification Components

The Custos access control abstraction revolves around designating an Access Control Spec-

ification (ACS) for each OU in the Custos architecture. An ACS consists of three components

(Figure 3.3). First, each ACS contains a full list of the applicable Custos permissions for the

given OU. Associated with each permission is one or more access control chains (ACCs). Each

ACC consists of an ordered list of authentication attributes.

3.2.1 Permissions

The Custos access control model starts with the concept of a permission: a right to perform

a specific Custos action. Custos has specific permissions associated with each OU: per-server

permissions (Table 3.1), each associated with the top-level Custos server, per-group permissions

(Table 3.2), each associated with a specific server group, and per-object permissions (Table 3.3),

45

each associated with a specific key:value object within a group. The first three letters of a permission

name indicate the type of OU with which it is associated: srv:server, grp:group, or obj:object.

The ACS for a given OU contains all permissions related to that OU.

Custos permissions are generally associated with the three core Custos subsystems based

upon the subsystem handling the associated actions the permission grants: data access, auditing,

and management. The Custos data access permissions follow the pattern used by many data

access systems: permission to read data, permission to write data, permission to create data, and

permission to delete data. Likewise, Custos associates audit permissions with various entities. Audit

permissions grant read and delete access to various audit data. Finally, the Custos management

permissions control a user’s ability to manage a specific Custos OU. This includes the ability to

manipulate OU access control specifications and to create lower-level OUs. Unlike many systems,

Custos has no notion of object ownership. Instead, it relies on providing access to each right an

owner would traditionally hold via explicit permissioning.

Custos group and server ACSs also include an “override” permission. This permission can

be used to override the permissions of a lower-level OU’s ACS. For example, anyone gaining the

srv grp override permission can use it to gain any of the rights normally granted via a group-level

permission. Likewise, anyone gaining the grp obj override permission can use it to gain any of

the rights normally granted via an object-level permission. These overrides exist for administrative

tasks: allowing server admins to manipulate group (and thus, also object) data, and allowing group

admins to manipulate object data. They must be used with caution (or disabled), but they provide

a powerful mechanism for Custos administration.

Custos permission are initially set when the associated OU is created. Part of the creation

process involves passing Custos the initial ACS definition for a new OU instance. After creation,

The ACS can be updated by anyone granted the necessary acs set permission for the specific OU

instance. This provides a flexible mechanism for setting and changing permissions.

46

Permission Rights

srv grp create create groups on a Custos server

srv grp list list groups on a Custos server

srv grp override escalate to any group-level permission, overriding the per-group ACS

srv audit
read all server-level audit information
(i.e. group creation logging, group override logging, etc)

srv clean
delete all server-level audit information
(i.e. group creation logging, group override logging, etc)

srv acs get view the server-level ACS controlling the permissions in this list

srv acs set update the server-level ACS controlling the permissions in this list

Table 3.1: Per-Server ACS Permissions

Permission Rights

grp obj create create a key:value objects within the given group

grp obj list list key:value objects within the given group

grp obj override escalate to any object-level permission, overriding the per-object ACS

grp delete delete the given group on a Custos server

grp audit
read all group-level audit information
(i.e. object creation logging, object override logging, etc)

grp clean
delete all group-level audit information
(i.e. object creation logging, object override logging, etc)

grp acs get view the group-level ACS controlling the permissions in this list

grp acs set update the group-level ACS controlling the permissions in this list

Table 3.2: Per-Group ACS Permissions

3.2.2 Access Control Chains

Now that we’ve seen the available permissions contained in an ACS for a specific OU, I can

explain the next portion of an ACS: the access control chains (ACCs). An access control chain is

an ordered list of authentication attributes. Each permission in an ACS has one or more associated

47

Permission Rights

obj delete delete the given key:value object within the given group

obj read read the given key:value object within the given group

obj update
create a new version of the given key:value object within the given group
(the equivalent of a “write” permission for the Custos write-once system)

obj audit
read all object-level audit information
(i.e. object read logging, object update logging, etc)

obj clean
delete all object-level audit information
(i.e. object read logging, object update logging, etc)

obj acs get view the object-level ACS controlling the permissions in this list

obj acs set update the object-level ACS controlling the permissions in this list

Table 3.3: Per-Object ACS Permissions

ACCs. In order for a request to be granted a specific permission, it must be able to provide

authentication attributes satisfying at least one of the ACCs associated with that permission.

If a user wishes to disable access to a permission, they can do so by associating the Null ACC

with that permission. If the user want’s to provide unrestricted access to a permission, they may

do so by associating an empty ACC with the permission.

For example, consider a key:value object whose obj read permission has the following ACC:

[(username = ’Andy’), (password = ’12345’), (ip_src = 192.168.1.0/24)]

In order for my read request for the associated key:value object to succeed, I would have

to make sure that my request contained all three of the above authentication attributes. That

would mean attaching the ’username’ attribute to the request with a value of ’Andy’, as well as

attaching the ’password’ attribute to the request with a value of ’12345’. The ip src attribute is an

implicit attribute (see next section) and will be automatically added to my request when received

by the Custos server. In order to satisfy it, I would have to send the request from the local network

attached to the Custos server I’m trying to query.

48

Looking at a slightly more complex example, consider the same obj read permission, but

this time with two separate ACCs associated with it:

[(username = ’Andy’), (password = ’12345’), (ip_src = 192.168.1.0/24)]

[(username = ’Andy’), (password = ’12345’), (ip_src = 75.148.118.216/29)]

[(username = ’John’), (password = ’Swordfish’)]

Now I am able to make the Custos request from either the local network or from my home

IP range. As long as I can satisfy at least one ACC in a set of ACCs for a given permission, I am

granted the right to perform actions associated with the permission. I have also granted access to

an additional user, John, with his own password and no ip src restriction.

This system is highly flexible. Take, for example, the lack of explicit username support

anywhere in the Custos specification. As was done above, usernames simply become another

authentication attribute. Often a username will be the first attribute in a ACC to allow for all

following attributes to be set relative to a given username (as shown in the example above). But

there’s nothing special about usernames. I could just have easily started each ACC with a ip src,

requiring a separate password based upon the location a user is making their request from. The

combination of simple ordered attribute lists and a wide range of flexible attributes makes for a

very powerful access control system.

Another point worth noting is that sets of ACC lists can be converted into sets of ACC trees,

often simplifying the understanding or verification of their intent. ACC lists are converted into

ACC trees by combining each attribute in matching attribute sub-chains across multiple lists into

single nodes in a ACC tree. For example, the previous set of ACC lists could also be represented

as:

(username = ’Andy’)

(password = ’12345’)

(ip src = 75.148.118.216/29)(ip src = 192.168.1.0/24)

(username = ’John’)

(password = ’Swordfish’)

49

Finally, where desired, the Custos API can continue to prompt the user for the next N missing

attribute types in a chain. For now, N is a per-implementation constant, but eventually N will be

available as a configuration parameter on a per-object basis. When N ¿ 0, this feature is leaking

some authentication information in the form of the required attribute types (although not their

values), so it is left to the user to decide when such leaking is acceptable and when it is not. When

in use, this feature allows a Custos server to engage in a back-and forth with a client to prompt the

client through all required attribute types in an ACC. For example, in the case where N is equal to

1, and the previously mentioned ACCs are in effect, the following set of transactions would occur:

(1) The user sends a read object request with no attributes

(2) The server respond that a username attribute is required

(3) The user resubmits the request with an attached username attribute equal to ’Andy’

(4) The server responds that a password is required

(5) The user resubmits the response with a password equal to ’12345’

(6) As long as the user is submitting requests from either the local network or my home IP

range, the server will respond granting the request.

But what happens when there are multiple next steps in an ACC? For a more complex

request-response example, consider the ACC expressed in the following tree:

(username = ’Andy’)

(auth cert = ’0x32C59C00’)(password = ’12345’)

In this ACC, I must either provide a password or prove access to an authentication certificate.

Rehashing the request-response sequence from the previous ACC example:

(1) The user sends a read object request with no attributes

(2) The server respond that a username attribute is required

50

(3) The user resubmits the request with an attached username attribute equal to ’Andy’

(4) The server responds that a password or an auth cert is required

(5) The user resubmits the response with a password equal to ’12345’

(6) The server responds granting the request.

3.2.3 Authentication Attributes

Each Access Control Chain contains one or more Authentication Attributes (AAs). An

authentication attribute is a generic container for authentication data. AAs contain the following

information:

Class

The class is the top level classification property of an AA. It is used to designate the nature

of a given AA. Currently, Custos specifies two possible values for class: “implicit” and

“explicit”. Implicit attributes are those that are automatically associated with a request

(like an IP address or SSL client certificate). Explicit attributes are those that the user

provides directly to Custos (like a password or token).

Type

Within a given class, the AA type specifies which authentication plugin should handle a

specific attribute. Details on currently supported Custos types are provided below.

Value

The value contains the arbitrary binary data associated with a given attribute. This could

be a password, token, or portion of a handshake for more complicated authentication mech-

anisms.

The current Custos specification supports a handful of authentication types. Thus far, the

types support by Custos are primarily stateless authentication mechanisms. This simplifies the

design of the RESTful interface and authentication plugins. That said, Custos eventually intends

51

to supports fully arbitrary authentication parameters, allowing authentication plugins to maintain

their own state across requests where required. The currently defined implicit types are:

ip src

The source IP of a request as seen by the Custos server (e.g. the gateway IP where NAT

is in use, etc). Compared against the required 〈base〉/〈mask〉 specification where included.

user agent

The HTTP user agent associated with a given request. Compared against the required text

value where included.

auth type

The HTTP authentication type associated with a given request (i.e. none, basic, digest,

tls). Compared against the required type where included.

auth value

The HTTP authentication value associated with a given request. Often a username or some

other identifying value output by the HTTP server’s internal authentication mechanisms.

Compared against the required value where included.

time utc

The time the request arrived in UTC. Compared against the 〈base〉/〈mask〉 UTC time

specification where included.

The currently defined explicit types are:

user id

An arbitrary value. Directly compared against the required attribute value where included.

Behaves the same as the psk type, but gets its own type name for readability of semantic

intent.

psk

An arbitrary value. Directly compared against the required attribute value where included.

52

psk sha256

An arbitrary value. Hashed with the sha256 algorithm with the result compared against

the the required attribute value where included. Specifications related to iterations and

salting are specified on a per-site basis.

psk bcrypt

An arbitrary value. Hashed with the bcrypt algorithm with the result compared against

the the required attribute value where included. Specifications related to work factor and

salting are specified on a per-site basis.

Other authentication types will be added as Custos matures. It’s also possible for Custos

implementations to support non-standard types, but this may effect inter-implementation compat-

ibility. Implementations that do use their own types may wish to propose them as official types so

that other implementations will support them as well.

3.2.4 Access Example

As an example showing the full access control process, consider a Custos-backed encrypted

file system application. Figure 3.4 shows two users of this application attempting to access an

encrypted file. In order to decrypt the file and provide access, the encrypted file system must query

Custos for the necessary encryption keys.

The first user (red) is a daemon process running on a headless server (IP = 1.2.3.4). The

encryption key for the file the daemon wishes to read has an ACS associated with it that grants

the obj read permission on the basis of the host IP and the time:

53

Figure 3.4: An Example Custos Request Sequence for an Encrypted File System

{

obj_read:

[

[(ip_src = ’1.2.3.4’), (time_utc = ’1300 +/- 5’)]

...

]

...

}

When the daemon reads the file, the encrypted file system requests the associated encryption

key from the server (dashed red line). The request passes through the access control module, which

looks up the Access Control Chains associated with the obj read permission for the requested

key:value pair. The requests is then passed to each of the necessary Authentication Attribute

54

modules in the order they appear in the ACC. Because the request is coming from an allowed IP,

it passes the source IP verification module. Next, as long as the request is being made within 5

minutes of 1300 hours UTC, the request will also pass the time verification module. After satisfying

both attributes specified in the ACC, the request is granted the obj read permission and passed

to the audit module for logging. Finally, the server looks up the requested key:value object (in

this case the encryption key for the corresponding file) in the key:value store, generates a response,

and returns it to the encrypted file system. The file system decrypts the file and returns it to the

daemon that originally made the read request. All of this is done without any interactive input

on the part of the daemon, overcoming one of the traditional obstacles to using encryption with

automated processes.

The second user (blue) is a live user named Dirk also trying to read a file on the encrypted

file system. The encryption key for the file the user wishes to read has an ACS associated with it

that contains the obj read permission and grants access to this permission on the basis of the user

ID and a password:

{

obj_read:

[

[(user_id = ’Dirk’), (psk = ’WorldOfBeer’)]

...

]

...

}

When the user reads the file, the encrypted file system requests the associated encryption

key from the server (dashed blue line), attaching the current user’s ID of ’Dirk’ to the request

(but excluding the password). The request passes through the access control module, which, as be-

fore, looks up the Access Control Chains associated with the obj read permission for the requested

55

key:value pair. The request is then passed to the user ID verification authentication plugin, which

confirms that the user ID of Dirk is present, next the request is passed to the PSK module for

password verification. Unfortunately, the request lacks the necessary password, so the server re-

sponds to the request informing the encrypted file system that a password is required for user

’Dirk’. The encrypted file system prompts the user for their password, and reissues the request,

including everything from the first request and in addition the newly provided password (dotted

blue line). This time the request clears both AA verification modules, passes through the auditing

system, and finally hits the actual key:value store. Here the server looks up the requested key,

generates a response, and returns it to the file system. The file system decrypts the requested file

and allows the user’s read operation to proceed on the resulting clear text.

3.3 API

The Custos API is the primary interface for interacting with a Custos server. The API

handles, data, management, and auditing requests through a common interface. All API requests

pass authentication attributes as a means of attaining the necessary permission level for a requested

operation. The order in which these authentication attributes are passed in each request is not

relevant. Custos treats them as a heap of attributes and attempts to extract attributes from the

heap in an order that will satisfy the requirements of a specific ACS. The API is RESTful and

primarily stateless (individual authentication modules are allowed to maintain state if required).

API requests are made to specific server HTTP endpoints. The standard HTTP verbs (GET,

PUT, POST, and DELETE) are used to multiplex related operations atop a specific endpoint. Each

combination of endpoint and verb defines a specific API method. Each method requires a specific

permission to complete. The API request and response message formats are composed in JSON.

Binary data is encoded as Base64 ASCII text. Authentication attributes are passed via query string

as URL encoded JSON. Custos uses UUIDs [68] as keys, each associated with an arbitrary object

for values. In general, the server is responsible for object UUID generation at object creation time.

56

3.3.1 Message Format

API requests and responses use standard JSON objects as the basis for their message formats.

The effect of the message is determined by its content, as well as the endpoint and verb used to

send it to the server. Example API messages can be found in Appendix A. The basic JSON objects

used to compose Custos requests or responses include:

Attr objects: JSON Dictionaries representing AAs. Includes the following keys:

Class

The AA class.

Type

The AA type.

Value

The AA value, encoded as Base64 ASCII.

Echo

A Boolean indicting whether or not the server should (when possible) echo the value of the

Attr contained in a request back to the user in the response.

Status (Response Only)

The status indicating whether a given AA was accepted, denied, ignored, or required.

ResValue (Response Only)

An arbitrary response from a given AA module providing details on the nature of the status

or instructions on how to continue. Encoded as Base64 ASCII.

Key objects: JSON dictionaries represent key:value objects. Includes the following keys:

Value

The object value, encoded as Base64 ASCII.

57

Echo

A Boolean indicting whether or not the server should (when possible) echo the value of the

Key contained in a request back to the user in the response.

UUID (Response Only)

The UUID identifying the key.

Revision (Response Only)

The key revision.

Status (Response Only)

The status indicating whether the requested operation on the Key was allowed or denied.

ACS objects: JSON dictionaries representing ACSs. Includes the following keys:

Permissions

A dictionary of permission:(ACC list) pairs. Each ACC list is, in turn a list of Attr JSON

objects

Echo

A Boolean indicating whether or not the server should (when possible) echo the value of

the ACS contained in a request back to the user in the response.

Status (Response Only)

The status indicating whether the requested operation on the ACS was allowed or denied.

All API requests contain an order-agnostic list of Attrs JSON objects passed in a aa= query

string parameter attached to each request URL. Requests making use of one the of override

permission pass an additional ovr=true parameter to signal the server that the associated AAs

should be processed against the appropriate override permission ACC instead of the standard

permission ACC. All query string parameters are URL encoded prior to being attached. Requests

that refer to specific groups pass the group UUID as part of the URL. Likewise, requests referencing

specific objects pass the object UUID as part of the URL.

58

In addition to the above data, Custos requests that create or update objects or ACSs pass

the object/ACS value in the POST or PUT message body as a JSON dictionary. On creation, this

JSON dictionary contains a Key JSON object stored under the ‘‘Key’’ key, as well as an ACS

JSON object stored under the ‘‘ACS’’ key. An object update works the same way, but only the

‘‘Key’’ key and associated JSON object are passed. Likewise, an ACS update passes only the

‘‘ACS’’ key and the associated JSON object. All Custos POST and PUT requests may contain an

optional chk= query string parameter containing a list of checksums for the corresponding request

body data.

Custos responses are returned as JSON dictionary objects containing one or more key:value

pairs. All Custos responses contain the following required dictionary keys:

Status

The integer status code of the response. Used to indicate errors processing the correspond-

ing request (malformed request, etc).

Attrs

A list of Attr JSON objects. Used to identify or prompt for the AAs associated with the

corresponding request.

Each response may also optionally contain any of the following dictionary keys:

Keys

A list of Key JSON objects. Used to provide the key:value objects associated with the

corresponding request.

ACSs

A list of ACS JSON objects. Used to provide the ACSs associated with the corresponding

request.

The API also makes use of standard HTTP codes to return statuses when responding to

requests. Successful requests return code 200. Malformed and otherwise corrupt requests return

relevant error codes.

59

3.3.2 Endpoints

Custos messages are sent to the Custos server via a series of endpoints. Each endpoint

relates to a specific data object or class of data objects on the Custos server. These objects can be

manipulated in various ways using the standard HTTP verbs. I’ll present each endpoint categorized

by the subsystem it is primarily associated with (data, auditing, or management).

The data endpoints are used to create, access, update, and delete Custos key:value objects

or groups. The data endpoints, their associated verbs, and the required permissions are shown in

Table 3.4.

Endpoint Verb
Required
Permission

Purpose

/grp POST srv grp create

create a new
group, returning
the group’s
UUID

/grp GET srv grp list
return the list of
all groups

/grp/〈grp uuid〉 DELETE grp delete remove a group

/grp/〈grp uuid〉/obj POST grp obj create

create a new
key:value object,
returning the
object’s UUID

/grp/〈grp uuid〉/obj GET grp obj list
return a list of all
key:value objects

/grp/〈grp uuid〉/obj/〈obj uuid〉 PUT obj update

update an
existing
key:value object

/grp/〈grp uuid〉/obj/〈obj uuid〉 GET obj read
return a
key:value object∗

/grp/〈grp uuid〉/obj/〈obj uuid〉 DELETE obj delete
delete a
key:value object

Table 3.4: Data API Methods

∗ The rev= query string parameter may be used to specify a specific object version, otherwise the
latest version is returned

60

The audit endpoints are used to audit data related to a specific Custos OU. The audit

endpoints, their associated verbs, and the required permissions are shown in Table 3.5.

Endpoint Verb
Required
Permission

Purpose

/audit GET srv audit

return the
server-wide audit
data

/audit DELETE srv clean

purge the
server-wide audit
data

/grp/〈grp uuid〉/audit GET grp audit
return the
group-wide audit
data

/grp/〈grp uuid〉/audit DELETE grp clean
purge the
group-wide audit
data

/grp/〈grp uuid〉/obj/〈obj uuid〉/audit GET obj audit

return the audit
data associated
with a key:value
object

/grp/〈grp uuid〉/obj/〈obj uuid〉/audit DELETE obj clean

purge the audit
data associated
with a key:value
objects

Table 3.5: Audit API Methods

The management endpoints are used to manage access rights related to a specific Custos OU.

The audit endpoints, their associated verbs, and the required permissions are shown in Table 3.6.

3.4 Implementation

I have completed example Custos implementations for both a Custos server and a Custos

client library. These implementations adhere to the architectures and interfaces discussed thus

far and represent the “0.2-dev” Custos specification and API revision. These implementations are

merely for proof-of-concept and reference usage. They have not been optimized for performance,

61

Endpoint Verb
Required
Permission

Purpose

/acs GET srv acs get
return the ACS
associated with a
server

/acs POST srv acs set

set a new ACS
associated with a
server

/grp/〈grp uuid〉/acs GET grp acs get
return the ACS
associated with a
group

/grp/〈grp uuid〉/acs PUT grp acs set
set the ACS
associated with a
group

/grp/〈grp uuid〉/obj/〈obj uuid〉/acs GET obj acs get

return the ACS
associated with a
key:value object

/grp/〈grp uuid〉/obj/〈obj uuid〉/acs PUT obj acs set

set the ACS
associated with a
key:value object

Table 3.6: Management API Methods

scalability, etc. Building high-volume, fully production ready implementations is left to future work

(see Chapter 5).

3.4.1 Server

The reference server implementation is written in Python 2.7 leveraging the Flask microframe-

work [100]. This framework simplifies the exposure of endpoints and handling of HTTP requests. It

interfaces with the local web server (Apache [5] in this case) via the WSGI [23] interface. A Custos

server could easily be implemented in any web-app friendly language (i.e. Python, Go, Ruby, Java,

etc). Python was selected for its ease of use and rapid prototyping capabilities.

The reference server implementation does not use a discreet backing key:vale store. Instead,

it stores all data in local files via the Python shelve [28] interface. Again, this was done for rapid

62

prototyping and easy troubleshooting. This interface could be easily replaced with a production

NoSQL-like key:value store (i.e. MongoDB [54], Cassandra [6], etc).

When handling requests, the server primarily adheres to the description provided in this

chapter. There are, however, a few limitations to the implementation. Currently, the implemen-

tation ignores the group attributes, treating all requests as coming from a single global group.

Since groups are only necessary in a multi-tenant scenario, this compromise seems acceptable for a

prototype implementation. Also, not all server-wide API calls are supported at this time. The cor-

responding parameters are manually configured where not yet supported via the API. Beyond that,

the reference implementation functions as described, and is capable of supporting basic key:value

storage and access control workloads.

The server implementation is actually surprisingly short: about a thousand lines of python

code in its basic form. The bulk of the code is spent performing the necessary Access Control

regulations. This seems reasonable given that the bulk of the Custos server exists for the purpose

of performing access control. The use of a web-app friendly language clearly reduces the amount of

code required by allowing most of the complexity associated with networking and message exchange

to be handed off to separate libraries. Using a preexisting backing store also simplifies the Custos

code base by avoiding the need to build an entirely new key:value storage database from scratch.

3.4.2 Client

On the client front, I’ve create a reference client library appropriate for use with C-based

applications: libcustos. I’ll discuss the details of actual examples applications in Chapter 4, but

the client library itself is discussed here. A C library is necessary due to the lack of native support

for many of the components of the Custos architecture in the C programming language (e.g. JSON,

HTTP communication, dictionaries, etc). Higher level languages like (i.e. Python) have a much

easier time interfacing with the Custos architecture and thus may not require full blown interface

libraries.

63

libcustos leverages the Curl [114] library for performing HTTP requests. It uses the

json-c [47] library for building and decoding JSON data structures. It also leverage various

third party libraries for Base64 encoding, UUID generation, and checksum generation.

libcustos deals with translating Custos JSON messages into C data structures. It exposes

a series of functions for dealing with Custos data types, handling data type memory management,

making Custos requests, and processing the resulting response. The library aims to be thread-safe

and defensively coded. It makes it easy to interface C applications with the Custos architecture.

It could also be used by languages that accept C-bindings like C++ or Python.

Compared to the server, the libcustos implementation is quite a bit longer: about 5000

lines of C code. This is largely due to the extra effort required to properly and safely convert

between Custos message formats and C data structures. The code would be even longer if not for

the use of separate libraries for handling the core communication primitives. This length, however,

does show the importance of having a C-based client library: many file systems and encryption

systems are written in C, and it would be impractical for these applications to fully implement

the Custos protocol directly due to the complexity involved. Applications based on higher level

languages would likely have better luck directly interfacing with Custos.

Chapter 4

Applications

In Chapter 2, I discussed several potential applications for Custos. In Chapter 3, I discussed

the Custos architecture and server API. In this chapter, I’ll look more closely at several example

applications that interface with the Custos server and leverage Custos to enhance their functionality.

As with the implementations provided in Chapter 3, these applications are designed merely to serve

as examples of how one might leverage Custos. They are by no means intended to represent a

complete list of all possible Custos applications. Nor are they designed as fully production ready

systems. They are proofs of concept that demonstrate how to use Custos and the features using

Custos brings.

4.1 EncFS: A Custos-backed Encrypted File System

As discussed, encrypted file systems are a core Custos use case. As such, I have written a

layered, encrypted pass-through file system: EncFS. This file system leverages Custos for encrypted

file key storage, and leverages underlying file systems for encrypted file storage. It enables use cases

not normally available in other encrypted file systems.

The file system is capable of supporting encrypted operation in a wide range of scenarios.

Since it is a pass-through file system, it can be used atop Cloud storage systems like Dropbox [53],

securing storage of a user’s files in the cloud. Custos enables access to the encrypted files from

multiple devices or by multiple users, allowing a user to use Dropbox as they normally would to

65

Figure 4.1: The EncFS File System Architecture

sync files across multiple devises or to share files with other, all while still benefiting from client-side

encryption.

The system can also be used atop a user’s local file system, guarding against data compromise

in the event that the user’s computer is lost or stolen. In addition, the file system has proven useful

for use on servers, where Custos’s flexible authentication systems can allow for daemon-based non-

interactive access. This has allowed me to encrypt server files like logs or mailboxes that normally

must not be encrypted in order to support non-interactive access by system processes.

4.1.1 Architecture

As Figure 4.1 shows, EncFS uses an architecture similar to that described as the “layered

model” in Chapter 2. It acts as a shim between file system operations (read, write, create, etc)

and the actual realization of these operations on the underlying file system, providing transparent

66

encryption in the process. If the user attempts to read a file directly from disk without first

passing through the EncFS layer, they will only receive encrypted gibberish. But when the same

file is accessed through the EncFS layer, the user may interact with the file as though it were not

encrypted at all. As such, the user’s files are fully protected when the EncFS layer is not running,

and easily accessible when this layer is running.

At this time EncFS only provides file encryption, not file organization (directory structure)

encryption. This is sufficient to demonstrate how to use Custos to secure an encrypted file system,

while avoiding the complexity of also encrypting file system organization. When a user wishes to

start EncFS, they specify a mount point and a base file system point. The base file system point

becomes the root of the EncFS backing file system. Any files accessed via the EncFS mount point

are actually stored/accessed at the underlying base file system point. EncFS simply provides a

means for adding and removing encryption between the actual storage of files on the underlying

file system and the corresponding access to files on the part of a user.

Because file systems do nor normally provide means for interactive authentication, all nec-

essary authentication parameters must be passed to EncFS at the time it is mounted/started. If

a user tries to access a file for which the combination of provided and implicit authentication at-

tributes are not sufficient, they are simply denied access to the file. EncFS itself does not provide

the ability to manipulate Custos Access Control Specifications. Instead, this manipulation is han-

dled by a separate, dedicated utility program (see below). As long as the user has the necessary

permissions, all encrypted file access via EncFS is fully transparent, allowing easy integration with

other applications via the standard Linux file interface [56].

4.1.2 Implementation

EncFS is implemented using the FUSE [117] user-space file system framework. I chose a

FUSE-based implementation over a native Linux kernel-module implementation for EncFS in order

to allow easy usage of a variety of user-space libraries (i.e. libcustos, OpenSSL, etc). The

basics of using FUSE to create a virtual overlay file system like EncFS are described in my previous

67

work: [104]. FUSE provides a series of callbacks that are triggered by various file system operations.

Each callback is then implemented by EncFS in C in order to provided the desired encryption

functionality.

All encryption in EncFS uses the AES symmetric encryption cipher with 256-bit keys and the

CBC encryption mode. Encryption operations are handled by the OpenSSL [92] crypto library1

. Data written via the EncFS mount point is encrypted before being committed to an actual file

on the underlying disk. Likewise, data read via the EncFS mount point is decrypted before being

passed back to the user. This includes decrypting files when the user accesses related meta-data

like file size to ensure the user receives the size of the unencrypted file content. Currently, EncFS

encrypts files in single CBC blocks, meaning the entire file must be read to decrypt any portion

of it. This can have an adverse effect on access to random offsets within a file. I plan to upgrade

the system to support breaking files into blocks in order to speed random access and streaming

operations in the near future.

EncFS interacts with Custos via the libcustos library (see Chapter 3). This allows EncFS

to offload the complexities of the Custos API to a dedicated code base. libcustos provides the

necessary functions to allow EncFS to read, update, delete, and create Custos key:value objects.

When a user wishes to decrypt a file, EncFS requested the associated encryption key from the

Custos server using the UUID stored with the file (either via extended attributes or in a header

block appended to the encrypted file contents, depending on underlying file system’s support for

extended attributes). If EncFS posses the necessary authentication attributes (either supplied by

the user at mount time or derived contextually), Custos returns the requested encryption key and

EncFS proceeds to decrypt the file. The opposite operation occurs when a file is created or written,

with EncFS rotating the encryption key and uploading a new version to Custos for each write

operation.

1 Following the old adage that one should never “roll their own” crypto. Leave it to the professionals! (Or at least
to a widely used, well vetted, open-source code base.)

68

4.2 “Banking” Website

As a second example application, I’ve designed the shell of a fake “banking” website (meant

to represent any website that collects personal data) that demonstrates how a user and website

could use Custos as a dedicated user data store (instead of the more typical encryption key store

discussed in the previous example). This example presents the user with a basic “Enter your info”

page familiar to anyone who has ever signed up for a web site user account. Unlike a normal

“Enter your info” page, however, instead entering her info directly, the user instead inputs a UUID

pointing to the corresponding info on a Custos server. If the website wishes to read this info, the

user must grant them read access to the associated object on the Custos server. This allows the

user to control and audit website access to data. It also allows the user to avoid having to reenter

or update the same data on multiple websites. The user leverages Custos as a single repository of

all her data, granting websites access to specific data objects as required.

4.2.1 Architecture

Figure 4.2 shows the basic structure of the “banking” website demo app. The user is presented

with an “create new account” page that prompts her for a variety of personal information (Name,

SSN, address, etc). The user provides a UUID in response to each of these prompts instead of

providing the data directly. The user is assumed to have already created the corresponding data

objects on a Custos server (via the management interface discussed next).

When the user is done providing UUIDs, the website attempts to access this data on the

Custos server and display it to the user. If the user has granted the website read access to the data

(e.g. via a unique access key displayed to the user when entering the UUIDs, IP address, or various

other attributes or combinations of attributes), the server will return the data which the website

can then store. As discussed in Chapter 2, this both saves the user the hassle of manually entering

data, and also saves the website the trouble of locally storing data and keeping it safe and up to

69

Figure 4.2: The Demo “Banking” Website Architecture

date. The user also gains the benefit of the ability to revoke this data access latter and to audit

when and how the website is accessing the data.

4.2.2 Implementation

The website is implemented in Python 2.7 using the Flask [100] microframework (similar

to the process used to implement the Custos server in Chapter 3, but with actual UI elements

instead of just a RESTful API). The application communicates with the Custos server via the

Python requests [97] module. Python’s numerous standard modules handle JSON processing,

Base64 decoding, etc making interfacing a Python application directly with the Custos server

far easier than implementing a Custos-backed C application. Thus, no specialized library (i.e.

libcustos) is necessary.

When the user loads the website, it displays a basic form to the user, composed of the

requested data fields and a unique website ID key, randomly generated for each user and kept as a

70

secret between the user and the website. The user can (optionally) use this key as an authentication

attribute when limiting access to their data on the Custos server to uniquely identify a specific

website. When the user submits the form, the web app attempts to query the Custos server for the

provided UUIDs, sending along the secret key it displayed to the user as the user id authentication

attribute. If the user has granted the site read access to her data, either using this key, the server

IP address, some other attribute, or a combination of several attributes, the Custos server returns

the data which is then displayed to the user for verification.

4.3 Custos Management UI

In order to make Custos data easy to manage while developing various Custos apps that lack

built-in management capabilities, I’ve designed a basic management user interface that simplifies

the process of interacting with the Custos server. It provides a means to directly manage the Access

Control Specification associated with a given Custos key:value object, as well as to directly create,

update, and read objects.

4.3.1 Architecture

The management interface utilizes a web-based UI for managing Custos access control spec-

ifications and key:value data (Figure 4.3). The user accesses the UI by “logging in” through the

prevision of one or more authentication attributes. The UI stores these attributes in the user’s re-

sulting session state, and leverages them to provide the user access to various Custos permissions.

The user must have the ability to gain the appropriate permissions in order to make effective use

of the management UI.

Once “logged in”, the user can input a UUID identifying a Custos key:value object, or request

to create a new object. They may then choose to view the object and/or the current ACS associated

with the object. At this point, they can make any changes they desire to either the object or the ACS

before re-uploading the object or ACS to Custos (assuming they “logged on” with the appropriate

71

Figure 4.3: The ACS Management Architecture

permissions, otherwise their request will be denied). It is possible to list multiple objects in order

to perform batch changes.

Custos’s flexible authentication system also allows the administrator to setup Custos to allow

management access to any request from a specific IP, making it simple to designate a management

machine that can fully control Custos access without requiring more complex attributes. This

method has been used effectively to provide local-host access to a Custos server to expedite

management of server data while developing against it. It provides a means to manage the ACSs

associated with encrypted files from the EncFS application, as well as the means to store user data

and manipulate allowed viewers in the “Banking” Website application.

4.3.2 Implementation

Like the Custos server and the “Banking” website, the management UI is implemented in

Python using Flask. It initially prompts the user to “login” by providing one or more authentica-

72

tion attributes in JSON. These are then associated with the user’s session state within the Flask

framework.

When a user request to create or view an ACS or key:value object, the back-end builds

the necessary Custos message and issues the request, appending the users supplied authentication

attributes to the request. If the user has the necessary permissions to view the request item, the

item is returned. The user can manipulate the existing item directly, and if she desires, send it

back to Custos, replacing the original item, again, assuming the necessary permission. This system,

while not the most polished, provides the user with the ability to fully manipulate any item stored

on a Custos server.

The management interface could also be coded as a command line utility with fairly minimal

changes. The interface would be similar, just via command line interaction instead of a web UI.

Neither system is ideal for large scale, production Custos management, but both are adequate for

basic Custos management while testing or using the system with only a few users.

Chapter 5

Conclusion

Today, more so than ever, having secure, usable ways of protecting our data is of the utmost

importance. Unfortunately, existing technologies are failing us. Most data storage systems provide

little security by default. The technologies that do exist to secure data, like strong cryptography,

are challenging to use, especially in a manner that fits our modern usage habits. Furthermore, we

have been led to conflate features with trust, or at least to forgo trust in favor of features. How can

we protect and control our data in a manner that is easy to use, that is well suited to modern user

cases, and that allows us to control whom we chose to trust with our data while still leveraging the

rich set of features available on modern data-driven services? Custos aims to provide the basis of

one possible answer to these questions.

Custos’s primary contributions include:

Trust-Separation Architecture: For creating dedicated secret stores run by trusted providers

“Secret Storage as a Service Platform”: For providing a dedicated secret (i.e. encryption

key) storage and access control service

A generic, flexible access control scheme: Including the use of access control chains for gen-

eralized access control specifications using a range of authentication primitives

Custos protocol: For standardizing the exchange of secrets and the authentication information

required to access them

Custos Server Design and Implementing: Demonstrating the basics of Custos server design

74

Several Proof-of-Concept Custos Applications: Demonstrating the range of Custos use cases

and the manner in which one might improve existing application through the use of Custos.

5.1 Conclusions

Custos provides a flexible, secure key:value storage architecture. This architecture can be

used to store secrets directly, regulating access via flexible authentication primitives. It can also be

used as a component in a larger encryption-based data security scheme, where Custos provides a

logically centralized “Key Storage as a Service” platform capable of making the associated encryp-

tion systems more flexible, and thus more usable. The flexibility of the Custos architecture allow

it to solve a variety of modern security problems, and forms the basis for a “Trust as a Service”

security model appropriate for a range of contemporary applications.

5.1.1 Successes

My experience with Custos thus far has underlined the flexibility of the system. Custos’s

flexibility is primarily derived from two attributes of the system: Custos’s logically centralized

nature, and Custos’s extensible authentication and access control scheme. The centralization of

Custos allows many services to rely on it as a standardized security and access control system. The

centralized nature also supports multi-user, multi-device use cases that are not possible in local, ad-

hoc secret storage systems. The Custos access control scheme, from the pluggable authentication

modules supporting a range of authentication parameters to the arbitrary access control chains,

allows for a wide range of access control intentions to be expressed in a common, easy to use,

language.

Custos’s flexibility, in turn, enables usability improvements across a range of application

domains. Whether it’s allowing for encryption system that function across our myriad of modern

devices and allow us to securely share data with other users, or providing us with a centralized

personal data repository to which we can provide controlled access for the web services of our

choosing, Custos encourages secure designs that also remain usable. While I have not formally

75

verified this usability, anecdotal experience using Custos to protect my own data has shown it to

enable usable, secure systems that would not otherwise be achievable.

Finally, Custos provides a trust-separation architecture with a well defined interface. This

architecture could form the basis of market-derived approach to security. Once we can separate

trust from unrelated functionality, it becomes far easier to select and reward dedicated “trust

providers” on the basis of their trustworthiness, while still retaining the ability to select untrusted

services on the basis of the features they provide. If we truly wish to protect our data, we must

create an incentive-based system for providing trustworthiness as a service to users, just as we

currently have systems that incentive providing features to users. Custos provides a standardized,

inter-provider-compatible architecture on which such an ecosystem could be built.

5.1.2 Challenges

While Custos has its successes, it is certainly not without its challenges. First and foremost,

Custos does not eliminate the need for trust, it simply isolates and it and makes it more flexibly

assignable. In order to gain many of the usability benefits of a Custos-backed encryption system,

you must still trust a third party. While it is possible to operate your own Custos server, and some

may very well do that, doing so is not within realistic reach of many end-users, and may very well

negate many of the usability benefits Custos provides. Trust is still necessary, Custos only helps

commoditize and regulate it.

Furthermore, Custos, like any new system, faces adoption challenges. At this point in time,

there are no mainstream systems that utilize Custos. While I believe many systems could be refac-

tored to use Custos with minimal effort, the task of doing so, or convincing others to do so, in

still non-trivial. In order for Custos to succeed, it must see at least moderately widespread stan-

dardization and adoption. There must be readily available secure applications that utilize Custos.

Likewise, Custos providers must be easily available, affordable, and numerous (in order to ensure

some modicum of trustworthiness through competition). Until Custos, or a similar standardized

76

secret storage system, becomes widely available, using Custos in live production settings will remain

challenging.

The performance overhead of using Custos is also not well understood. For many end-user

applications, raw performance is not the primary concern, and there may exist a willingness to

sacrifice some performance in the name of increased security. That said, the overhead of Custos

across a range of applications has not been evaluated. Nor have Custos performance bottlenecks

and possible improvements been identified. Such analysis will come with time and additional use

of Custos and Custos-backed applications.

Custos’s authentication system, especially the access control chain component, is highly flex-

ible. But it remains to be seen whether or not this flexibility will lead only to increased ease of use

(a good thing), or whether it risks giving the user too much freedom, making it prone to misconfig-

uration and errors. Furthermore, the Custos protocol is believed to be capable of supporting a wide

range of authentication primitives, but at this time, only a handful of authentication primitives

have actually been tested. Whether or not the current format is capable of supporting more com-

plex authentication schemes, and how easily they might be implemented within the Custos plugin

framework, remains to be seen.

5.2 Future Work

The Custos work presented in this document represents the culmination of the initial Custos

design and implementation effort. It has resulted in a usable secret storage service and the basis

of a variety of applications that leverage this service. That said, there is plenty of work to be done

to make Custos a fully production-ready and proven system.

One of the key tenets of Custos design was usability, both the base usability of Custos itself,

and the increased usability of applications leveraging Custos. I would like to conduct one or more

user studies evaluating the usability of Custos and Custos backed applications. This might include

measuring the success users have building access control chains that meet their intentions (vs

those that subvert intentions through misconfiguration). It would also likely include measuring

77

the usability difference between a traditional encryption system and a Custos-backed encryption

system. Backing up the Custos design principles with some solid usability data, and adapting these

principles where necessary to increase usability, is a high priority for future Custos research.

I would also like to expand the reference Custos server implementation, making it more ro-

bust, scalable, and widely deployable. This will include switching to a high performance key:value

back-end, improving the Custos authentication plugin interface, producing plugins for additional

authentication primitives, and improving the efficiency of the Custos access control chain verifica-

tion process. I would also like to explore availability and redundancy features of the Custos server

using various secret sharing schemes.

I plan to build out several Custos-backed applications. This may include either new native

applications (like a Dropbox [53] encryption plugin) or the modification of existing applications

(like eCryptfs [45]). These applications would allow further testing of the Custos architecture and

server in a production environment, and might enable some of the use cases studies previously

mentioned.

Finally, Custos deserves a formal security audit to fully evaluate the security of the server,

client libraries, and communication protocol. If Custos is to interact with secure systems, it must

not jeopardize the security of these systems. Fortunately the Custos code base is still small enough

that a manual audit is possible. Subjecting Custos to automatic auditing tools or bounty-based

exploit contests might also yield interesting results with respect to the security of the underlying

systems. Issues and exploits discovered in such an audit would be addresses in the design and

implementation of future Custos revisions.

5.3 Discussion

The cryptographer Bruce Schneier once wrote, “It is insufficient to protects ourselves with

laws; we need to protect ourselves with mathematics” [105]. He is, of course, referring to strong

78

cryptography as the great technological equalizer, allowing anyone with access to a computer to

achieve “the same security as the largest governments” [106]. As it turns out, this is not true1 .

Not only has cryptography failed to enable the average person to protect herself [43], the

belief that it can has led to an increasing gap between the average user, who desires her data to be

protected, but who lacks the ability to protect it, and the elites who are capable of protecting their

own data while also preying on those who can’t. In his counter-culture manifesto, Computer Lib,

Ted Nelson states that, “Guardianship of the computer can no longer be left to the priesthood” [82].

It is just as true today as it was when he wrote it. We can not afford to forgo control of our data,

leaving it to be picked over by the “priesthood” of crypto elite. We have already seen where that

has taken us in the revelations of Mr. Edward Snowden, et. al. [44]: to a world where governments

and criminals (and governments turned criminals) will prey on the average computer user who lacks

the tools to adequately protect herself.

Furthermore, the rise of data-driven online serves has drastically increased the exposure of

our data to corporate interests. Users of sites like Facebook or Twitter like to think they are the

customers of these services. They are not. They are the product. The customers are the companies

that buy user information or access to user eyeballs from these services. This has created a colossal

conflict of interest: the companies we increasingly rely to store and safeguard our data have a

vested interest in profiting off of it. We must avoid this conflict be creating a separate class of third

parties, dedicated to the protection of our data (likely in return for payment) to act as a counter

balance against the companies that desire to profit from our data.

Custos is not about the mathematics. It is about making the mathematics, and the resulting

encryption techniques, available to everyone. It is about increasing security through the commodi-

tization of trust, through an increase in usability, and through the flexibility to support a diversity

of end user intentions. We all want to protect our data, and Custos aims to provide the basis for

a set of tools that will allow us to do that.

1 Schneier acknowledges the naivety of his original Utopian outlook on cryptography in his more recent works [106].

79

Security researchers can no longer afford to ignore the big picture. Encryption alone is useless.

Security requires a holistic treatment [4]. We must approach security from a technological, legal,

and anthropological standpoint. Only when we consider all of these factors can we hope to make

systems truly secure. Custos is one attempt to accommodate a wider outlook in order to increase

end user security. I hope that other such project will follow and that Custos and related efforts

will succeed. We must reclaim security, reclaim encryption, and reclaim control of our data. Our

continued digital freedom, and by proxy, our physical freedom, depend on doing just this.

Bibliography

[1] AgileBits. 1password. https://agilebits.com/onepassword.

[2] Amazon. Cloud hsm. http://aws.amazon.com/cloudhsm/.

[3] Amazon. Simple storage service. http://aws.amazon.com/s3/.

[4] Ross Anderson. Why information security is hard - an economic perspective. In Seventeenth
Annual Computer Security Applications Conference, pages 358–365. IEEE Comput. Soc,
2001.

[5] The Apache Software Foundation. Apache http server project. http://httpd.apache.org/.

[6] The Apache Software Foundation. Cassandra. http://cassandra.apache.org/.

[7] Apple. icloud. http://www.apple.com/icloud/.

[8] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando Andre, and Paulo Sousa.
DepSky: Dependable and secure storage in a cloud-of-clouds. In Proceedings of the sixth
conference on Computer systems, pages 31–46, 2011.

[9] Matt Bishop. Unix security: threats and solutions. In SHARE 86.0, number 916, pages 1–38,
1996.

[10] Matt Blaze. Oblivious key escrow. In Ross Anderson, editor, Information Hiding. Springer,
Berlin, 1996.

[11] Jon Brodkin. The secret to online safety: Lies, random characters, and a password manager.
Ars Technica, 2013.

[12] Milan Broz. dm-crypt. https://code.google.com/p/cryptsetup/wiki/DMCrypt.

[13] Jose M. Alcaraz Calero, Nigel Edwards, Johannes Kirschnick, Lawrence Wilcock, and Mike
Wray. Toward a Multi-Tenancy Authorization System for Cloud Services. IEEE Security &
Privacy Magazine, 8(6):48–55, November 2010.

[14] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. RFC 1880: OpenPGP
Message Format. Technical report, 2007.

[15] Mart̀ın Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and
Scott Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM Computer
Communication Review, 37(4), 2007.

81

[16] James L. Cebula and Lisa R. Young. A taxonomy of operational cyber security risks. Technical
Report December, 2010.

[17] Douglas Crockford. Introducing json. http://www.json.org/.

[18] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. Technical report, 1999.

[19] Dorothy E. Denning and Dennis K. Branstad. A Taxonomy for Key Escrow Encryption
Systems. Communications of the ACM, 39(3):34–40, 1996.

[20] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security (TLS) Protocol - Version
1.2. Technical report, 2008.

[21] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):29–40, 1976.

[22] Yuan Dong, Jinzhan Peng, Dawei Wang, Haiyang Zhu, Sun C. Chan, and Michael P. Mesnier.
RFS: a network file system for mobile devices and the cloud. ACM SIGOPS Operating
Systems Review, 45(1):101–111, 2011.

[23] P. J. Eby. Pep 3333: Python web server gateway interface. http://www.python.org/dev/

peps/pep-3333/.

[24] Bjarni Einarsson, Smair McCarth, and Brennan Novak. mailpile. http://www.mailpile.is.

[25] The Enigmail Project. Enigmail. https://www.enigmail.net.

[26] Donald G. Firesmith. A taxonomy of security-related requirements. International Workshop
on High Assurance Systems, 2005.

[27] Stephen Flowerday and Rossouw Von Solms. Trust: An Element of Information Security.
In Simone Fischer-Hübner, Kai Rannenberg, Louise Yngström, and Stefan Lindskog, editors,
Security and Privacy in Dynamic Environments, volume 201 of IFIP International Federation
for Information Processing, pages 87–98. Kluwer Academic Publishers, Boston, 2006.

[28] Python Software Foundation. shelve - python object persistence. http://docs.python.org/
2/library/shelve.html.

[29] A. Freier, P. Karlton, and P. Kocher. RFC 6106: The Secure Socket Layer (SSL) Protocol -
Version 3.0. Technical report, 2011.

[30] Clemens Fruhwirth. Luks. https://code.google.com/p/cryptsetup/.

[31] S. M. Furnell, A. Jusoh, and D. Katsabas. The challenges of understanding and using security:
A survey of end-users. Computers & Security, 25(1):27–35, February 2006.

[32] Steven Furnell. Usability versus complexity striking the balance in end-user security. Network
Security, (12):13–17, December 2010.

[33] Steven Furnell, Adila Jusoh, Dimitris Katsabas, and Paul Dowland. Considering the Us-
ability of End-User Security Software. In Simone Fischer-Hübner, Kai Rannenberg, Louise
Yngström, and Stefan Lindskog, editors, Security and Privacy in Dynamic Environments, vol-
ume 201 of IFIP International Federation for Information Processing, pages 307–316. Kluwer
Academic Publishers, Boston, 2006.

82

[34] Gazzang. ztrustee. http://www.gazzang.com/products/ztrustee.

[35] Roxana Geambasu, John P. John, Steven D. Gribble, Tadayoshi Kohno, and Henry M. Levy.
Keypad: an auditing file system for theft-prone devices. In Proceedings of the sixth conference
on Computer systems - EuroSys ’11, pages 1–16, New York, New York, USA, 2011. ACM
Press.

[36] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. ACM
SIGOPS Operating Systems Review, 37(5):29–43, December 2003.

[37] NightLabs Consulting GmbH. Cumulus4j. http://www.cumulus4j.org/.

[38] Dan Goodin. Why passwords have never been weaker, and crackers have never been stronger.
Ars Technica, 2012.

[39] Dan Goodin. How the bible and youtube are fueling the next frontier of password cracking.
Ars Technica, 2013.

[40] Google. Authenticator. https://code.google.com/p/google-authenticator/.

[41] Google. Chrome. https://www.google.com/chrome/.

[42] Google. Drive. http://www.google.com/drive/about.html.

[43] Matthew Green. The daunting challenge of secure e-mail. The New Yorker, 2013.

[44] Glenn Greenwald and Ewen MacAskill. Nsa prism program taps in to user data of apple,
google, and others. The Guardian, 2013.

[45] Michael Halcrow. ecryptfs. http://ecryptfs.org/.

[46] Michael Austin Halcrow. eCryptfs : An Enterprise-class Cryptographic Filesystem for Linux.
In Ottawa Linux Symposium, pages 201–218, Ottawa, 2005. International Business Machines,
Inc.

[47] Eric Haszlakiewicz. json-c. https://github.com/json-c/json-c/wiki.

[48] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and Alex J. Halderman. Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In Proceedings of the 21st
USENIX Security Symposium, 2012.

[49] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6(1):51–81, February 1988.

[50] R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma. Context
sensitive access control. In Proceedings of the tenth ACM symposium on Access control
models and technologies, page 111, New York, New York, USA, 2005. ACM Press.

[51] IBM. Restful web services: The basics. http://www.ibm.com/developerworks/

webservices/library/ws-restful/.

83

[52] Tarik Ibrahim, Steven M. Furnell, Marira Papadaki, and Nathan L. Clark. Assessing the
Usability of End-User Security Software. Trust, Privacy and Security in Digital Business,
6264:177–189, 2010.

[53] Dropbox Inc. Dropbox. https://www.dropbox.com/.

[54] MongoDB Inc. mongodb. http://www.mongodb.org/.

[55] Christian D. Jensen. CryptoCache: a secure sharable file cache for roaming users. In
Proceedings of the 9th ACM SIGOPS European Workshop, page 73, New York, New York,
USA, 2000. ACM Press.

[56] Michael K. Johnson. A tour of the linux vfs. http://www.tldp.org/LDP/khg/HyperNews/

get/fs/vfstour.html, 1996.

[57] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus: Scal-
able secure file sharing on untrusted storage. In Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, pages 29–42, 2003.

[58] Zeus Kerravala. Configuration management delivers business resiliency. The Yankee Group,
2002.

[59] Vishal Kher and Yongdae Kim. Securing distributed storage: challenges, techniques, and
systems. In Proceedings of the 2005 ACM workshop on Storage security and survivability,
page 9, New York, New York, USA, 2005. ACM Press.

[60] Werner Koch and Marcus Brinkmann. STEED - Usable End-to-End Encryption. Technical
report, 2011.

[61] Werner Koch and The GNU Project. Gnupg. http://www.gnupg.org/.

[62] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o. The evolution of the Kerberos
authentication service. In European Conference Proceedings, 1991.

[63] Hugo Krawczyk. Secret Sharing Made Short. In Douglas R. Stinson, editor, Advances in
Cryptology-CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 136–146.
Springer Berlin Heidelberg, Berlin, Heidelberg, July 1994.

[64] Brian Krebs. Safeguarding your passwords. Krebs on Security, 2008.

[65] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and
Ben Zhao. Oceanstore: An architecture for global-scale persistent storage. ACM SIGPLAN
Notices, 35(11):190–201, 2000.

[66] Puppet Labs. Puppet. http://puppetlabs.com/.

[67] LastPass. Lastpass. https://lastpass.com/.

[68] P. Leach, M. Mealling, and R. Salz. RFC 4122: A universally Unique IDentifier (UUID) URN
Namespace. Technical report, 2005.

84

[69] Marcos A. P. Leandro, Tiago J. Nascimento, Daniel R. dos Santos, Carla M. Westphall, and
Carlos B. Westphall. Multi-tenancy authorization system with federated identity for cloud-
based environments using shibboleth. In The Eleventh International Conference on Networks,
pages 88–93, 2012.

[70] Yan Li, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger, Ethan L. Miller, and
Darrell D. E. Long. Horus: Fine-Grained Encryption-Based Security for Large-Scale Storage.
In Proceedings of the 11th Conference on File and Storage Systems, 2013.

[71] The Linux-PAM Team. Linux pam. http://www.linux-pam.org/.

[72] Witold Litwin, Sushil Jajodia, and Thomas Schwarz. Privacy of data outsourced to a cloud
for selected readers through client-side encryption. In Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society, page 171, New York, New York, USA, 2011.
ACM Press.

[73] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin,
and Michael Walfish. Depot: Cloud Storage with Minimal Trust. ACM Transactions on
Computer Systems, 29(4):1–38, December 2011.

[74] A. Matsui, J. Nakajima, and S. Moriai. RFC 3713: A Description of the Camellia Encryption
Algorithm. Technical report, 2004.

[75] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Separating key
management from file system security. ACM SIGOPS Operating Systems Review, 33(5):124–
139, December 1999.

[76] Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase Ur. Measuring Password
Guessability for an Entire University. Technical report, 2013.

[77] Carnegie Mellon. Captcha. http://www.captcha.net/.

[78] Carnegie Mellon. Sasl. http://asg.web.cmu.edu/sasl/.

[79] A. Menezes, P. van Oorschot, and S. Vanstone. Overview of Cryptography. In Handbook of
Applied Cryptography, pages 1–48. 1996.

[80] MIT Media Lab. OpenPDS Software. Technical report, Human Dynamics, MIT Media Lab,
2012.

[81] Mozilla. Persona. https://developer.mozilla.org/en-US/Persona.

[82] Ted Nelson. Computer Lib / Dream machines. Self published, 1974.

[83] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, 1994.

[84] National Institute of Standards & Technology (NIST). Announcing the Advanced Encryption
Standard (AES). Federal Information Processing Standards Publication, 2001.

[85] National Institute of Standards & Technology (NIST). FIPS 140-2: Security Requirements
for Cryptographic Modules. Federal Information Processing Standards Publication, 2001.

85

[86] Donald A Norman. The design of everyday things. Basic books, 2002.

[87] OASIS. Saml. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

security.

[88] The OAuth Team. Oauth. http://oauth.net/.

[89] The OpenBSD Team. Openssh. http://www.openssh.com/.

[90] The OpenID Foundation. Openid. http://openid.net/.

[91] The OpenPGP Alliance. Openpgp. http://www.openpgp.org/.

[92] The OpenSSL Project. Openssl. http://www.openssl.org/.

[93] Opscode. Chef. http://www.opscode.com/chef/.

[94] Alen Peacock, Xian Ke, and Matthew Wilkerson. Typing patterns: a key to user identifica-
tion. IEEE Security & Privacy Magazine, 2(5):40–47, September 2004.

[95] Rackspace. Cloud keep. https://github.com/cloudkeep.

[96] Jarret Raim and Matt Tesauro. Cloud keep: Openstack key management
as a service. https://www.openstack.org/summit/portland-2013/session-videos/

presentation/cloud-keep-openstack-key-management-as-a-service.

[97] Kenneth Reitz. Requests: Http for humans. http://www.python-requests.org/.

[98] Jason K. Resch and James S. Plank. AONT-RS: Blending Security and Performance in
Dispersed Storage Systems. In 9th USENIX Conference on File and Storage Technologies,
2011.

[99] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[100] Armin Ronacher. Flask: web development one drop at a time. http://flask.pocoo.org/.

[101] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. ACM SIGOPS Operating Systems Review,
35(5):188, December 2001.

[102] Saltstack. Salt. http://www.saltstack.com/.

[103] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
Implementation of the Sun Network Filesystem. In Proceedings of the Summer 1985 USENIX
Conference, pages 119–130, Portland, OR, 1985.

[104] Andy Sayler, Junho Ahn, and Richard Han. Os programming assignment: An encrypted
filesystem. https://github.com/asayler/CU-CS3753-PA5.

[105] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[106] Bruce Schneier. Secrets and Lies. John Wiley & Sons, 2000.

86

[107] Bruce Schneier. Password advice. Schneier on Security, 2009.

[108] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. Twofish: A
128-bit block cipher. Technical report, 1998.

[109] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November
1979.

[110] The Shibboleth Consortium. Shibboleth. http://shibboleth.net/.

[111] Abe Singer, Warren Anderson, and Rik Farrow. Rethinking Password Policies (Uncut). ;login,
38(4), 2013.

[112] S. W. Smith. Fairy dust, secrets, and the real world. Security & Privacy, IEEE, 1(1):89–93,
January 2003.

[113] Dag-Erling Smorgrav. Openpam. http://www.openpam.org/.

[114] Daniel Stenberg. curl. http://curl.haxx.se/.

[115] Michael Sweikata, Gary Watson, Charles Frank, Chris Christensen, and Yi Hu. The usability
of end user cryptographic products. In 2009 Information Security Curriculum Development
Conference, page 55, New York, New York, USA, 2009. ACM Press.

[116] Symantic. Pgp. http://www.symantec.com/encryption.

[117] Miklos Szeredi. Fuse: Filesystems in userspace. http://fuse.sourceforge.net/.

[118] Alma Whitten and J. D. Tygar. Usability of security: A case study. Technical Report 102590,
1998.

[119] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation of PGP
5.0. In Proceedings of the 8th USENIX Security Symposium, pages 679–702, 1999.

[120] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: the least-authority filesystem. In
Proceedings of the 4th ACM international workshop on Storage security and survivability,
pages 21–26, New York, New York, USA, 2008. ACM Press.

[121] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA: The
Kernel of a Multiprocessor Operating System. Communications of the ACM, 17(6):337–345,
June 1974.

[122] Yubico. Yubikey standard. http://www.yubico.com/products/yubikey-hardware/

yubikey/.

Appendix A

Sample Custos Messages

88

A.1 Create New Key:Value Object

A.1.1 Request� �
1 [
2 {
3 ”Class ” : ” e x p l i c i t ” ,
4 ”Type ” : ” u s e r i d ” ,
5 ”Value ” : ”YXNheWxlcgA=”,
6 ”Echo ” : true
7 } ,
8 {
9 ”Class ” : ” e x p l i c i t ” ,

10 ”Type ” : ”psk ” ,
11 ”Value ” : ”TXlPYmplY3RDcmVhdGlvblBhc3N3b3JkA
12 A==”,
13 ”Echo ” : fa l se
14 }
15]� �

Listing A.1: Create Request Attr Object� �
1 POST https : // cus to s . net /grp/ cc4273ae−4e1e−11e3−90d4−10bf487b3e94 / obj ?aa=%5B%20%7B

%20%22Class%22%3A%20%22 e x p l i c i t%22%2C%20%22Type%22%3A%20%22u s e r i d%22%2C%20%22
Value%22%3A%20%22YXNheWxlcgA%3D%22%2C%20%22Echo%22%3A%20true%20%7D%2C%20%7B%20%22
Class%22%3A%20%22 e x p l i c i t%22%2C%20%22Type%22%3A%20%22psk%22%2C%20%22Value%22%3A
%20%22TXlPYmplY3RDcmVhdGlvblBhc3N3b3JkAA%3D%3D%22%2C%20%22Echo%22%3A%20 f a l s e%20%7
D%20%5D� �

Listing A.2: Create HTTP Request� �
1 {
2 ”Keys ” : [
3 {
4 ”Value ” : ”VHdhcyBicmlsbGlnLCBhbmQgdGhlIHNsa
5 XRoeSB0b3ZlczsgRGlkIGd5cmUgYW5kIG
6 dpbWJsZSBpbiB0aGUgd2FiZQA=”,
7 ”Echo ” : true
8 }
9] ,

10 ”ACSs” : [
11 {
12 ”Permiss ions ” :
13 {
14 ” ob j d e l e t e ” : null ,
15 ” ob j r ead ” : [
16 [
17 {
18 ”Class ” : ” e x p l i c i t ” ,
19 ”Type ” : ” u s e r i d ” ,
20 ”Value ” : ”YXNheWxlcgA=”,
21 ”Echo ” : true
22 } ,
23 {
24 ”Class ” : ” e x p l i c i t ” ,
25 ”Type ” : ”psk ” ,
26 ”Value ” : ”TXlPYmplY3RBY2Nlc3NQYXNzd29yZAA=”,

89

27 ”Echo ” : fa l se
28 }
29]
30]
31 ” obj update ” : null ,
32 ” ob j aud i t ” : null ,
33 ” ob j c l e an ” : null ,
34 ” ob j a c s g e t ” : null ,
35 ” o b j a c s s e t ” : null
36 }
37 ”Echo ” : true
38 }
39]
40 }� �

Listing A.3: Create HTTP Request Body

90

A.1.2 Response� �
1 {
2 ” Status ” : ”okay ” ,
3 ”Keys ” : [
4 {
5 ”Value ” : ”VHdhcyBicmlsbGlnLCBhbmQgdGhlIHNsa
6 XRoeSB0b3ZlczsgRGlkIGd5cmUgYW5kIG
7 dpbWJsZSBpbiB0aGUgd2FiZQA=”,
8 ”Echo ” : true ,
9 ”Revi s ion ” : 0 ,

10 ”UUID” : ”7 af8c95d−479a−46fe−b5de−8574c6ca1369 ” ,
11 ” Status ” : ” accepted ”
12 }
13] ,
14 ”ACSs” : [
15 {
16 ”Permiss ions ” :
17 {
18 ” ob j d e l e t e ” : null ,
19 ” ob j r ead ” : [
20 [
21 {
22 ”Class ” : ” e x p l i c i t ” ,
23 ”Type ” : ” u s e r i d ” ,
24 ”Value ” : ”YXNheWxlcgA=”,
25 ”Echo ” : true
26 } ,
27 {
28 ”Class ” : ” e x p l i c i t ” ,
29 ”Type ” : ”psk ” ,
30 ”Value ” : null ,
31 ”Echo ” : fa l se
32 }
33]
34]
35 ” obj update ” : null ,
36 ” ob j aud i t ” : null ,
37 ” ob j c l e an ” : null ,
38 ” ob j a c s g e t ” : null ,
39 ” o b j a c s s e t ” : null
40 } ,
41 ”Echo ” : true ,
42 ” Status ” : ” accepted ”
43 }
44] ,
45 ”Attrs ” : [
46 {
47 ”Class ” : ” e x p l i c i t ” ,
48 ”Type ” : ” u s e r i d ” ,
49 ”Value ” : ”YXNheWxlcgA=”,
50 ”Echo ” : true ,
51 ” Status ” : ” accepted ” ,
52 ”ResValue ” : null
53 } ,
54 {
55 ”Class ” : ” e x p l i c i t ” ,

91

56 ”Type ” : ”psk ” ,
57 ”Value ” : null ,
58 ”Echo ” : false ,
59 ” Status ” : ” accepted ” ,
60 ”ResValue ” : null
61 } ,
62 {
63 ”Class ” : ” imp l i c i t ” ,
64 ”Type ” : ” i p s r c ” ,
65 ”Value ” : ”NzUuMTQ4LjExOC4yMTcA” ,
66 ”Echo ” : true ,
67 ” Status ” : ” ignored ” ,
68 ”ResValue ” : null
69 }
70]
71 }� �

Listing A.4: Create HTTP Response

92

A.2 Get Existing Key:Value Object

A.2.1 Request - Denied� �
1 [
2 {
3 ”Class ” : ” e x p l i c i t ” ,
4 ”Type ” : ” u s e r i d ” ,
5 ”Value ” : ”YXNheWxlcgA=”,
6 ”Echo ” : true
7 }
8]� �

Listing A.5: Get Request Attr Object - Incomplete� �
1 GET https : // cus to s . net /grp/ cc4273ae−4e1e−11e3−90d4−10bf487b3e94 / obj /7 af8c95d−479a−46

fe−b5de−8574c6ca1369 ?aa=%5B%20%7B%20%22Class%22%3A%20%22 e x p l i c i t%22%2C%20%22Type
%22%3A%20%22u s e r i d%22%2C%20%22Value%22%3A%20%22YXNheWxlcgA%3D%22%2C%20%22Echo
%22%3A%20true%20%7D%20%5D� �

Listing A.6: Get HTTP Request - Incomplete

93

A.2.2 Response - Denied� �
1 {
2 ” Status ” : ”okay ” ,
3 ”Keys ” : [
4 {
5 ”Value ” : null ,
6 ”Echo ” : null ,
7 ”Revi s ion ” : null ,
8 ”UUID” : ”7 af8c95d−479a−46fe−b5de−8574c6ca1369 ” ,
9 ” Status ” : ” denied ”

10 }
11] ,
12 ”Attrs ” : [
13 {
14 ”Class ” : ” e x p l i c i t ” ,
15 ”Type ” : ” u s e r i d ” ,
16 ”Value ” : ”YXNheWxlcgA=”,
17 ”Echo ” : true ,
18 ” Status ” : ” accepted ” ,
19 ”ResValue ” : null
20 } ,
21 {
22 ”Class ” : ” e x p l i c i t ” ,
23 ”Type ” : ”psk ” ,
24 ”Value ” : null ,
25 ”Echo ” : false ,
26 ” Status ” : ” r equ i r ed ” ,
27 ”ResValue ” : null
28 } ,
29 {
30 ”Class ” : ” imp l i c i t ” ,
31 ”Type ” : ” i p s r c ” ,
32 ”Value ” : ”NzUuMTQ4LjExOC4yMTcA” ,
33 ”Echo ” : true ,
34 ” Status ” : ” ignored ” ,
35 ”ResValue ” : null
36 }
37]
38 }� �

Listing A.7: Get HTTP Response - Access Denied

94

A.2.3 Accepted Request� �
1 [
2 {
3 ”Class ” : ” e x p l i c i t ” ,
4 ”Type ” : ” u s e r i d ” ,
5 ”Value ” : ”YXNheWxlcgA=”,
6 ”Echo ” : true
7 } ,
8 {
9 ”Class ” : ” e x p l i c i t ” ,

10 ”Type ” : ”psk ” ,
11 ”Value ” : ”TXlPYmplY3RBY2Nlc3NQYXNzd29yZAA=”,
12 ”Echo ” : fa l se
13 }
14]� �

Listing A.8: Get Request Attr Object - Complete� �
1 GET https : // cus to s . net /grp/ cc4273ae−4e1e−11e3−90d4−10bf487b3e94 / obj /7 af8c95d−479a−46

fe−b5de−8574c6ca1369 ?aa=%5B%20%7B%20%22Class%22%3A%20%22 e x p l i c i t%22%2C%20%22Type
%22%3A%20%22u s e r i d%22%2C%20%22Value%22%3A%20%22YXNheWxlcgA%3D%22%2C%20%22Echo
%22%3A%20true%20%7D%2C%20%7B%20%22Class%22%3A%20%22 e x p l i c i t%22%2C%20%22Type%22%3A
%20%22psk%22%2C%20%22Value%22%3A%20%22TXlPYmplY3RBY2Nlc3NQYXNzd29yZAA%3D%22%2C
%20%22Echo%22%3A%20 f a l s e%20%7D%20%5D� �

Listing A.9: Get HTTP Request - Complete

95

A.2.4 Accepted Response� �
1 {
2 ” Status ” : ”okay ” ,
3 ”Keys ” : [
4 {
5 ”Value ” : ”VHdhcyBicmlsbGlnLCBhbmQgdGhlIHNsaX
6 RoeSB0b3ZlczsgRGlkIGd5cmUgYW5kIGdp
7 bWJsZSBpbiB0aGUgd2FiZQA=”,
8 ”Echo ” : null ,
9 ”Revi s ion ” : 0 ,

10 ”UUID” : ”7 af8c95d−479a−46fe−b5de−8574c6ca1369 ” ,
11 ” Status ” : ” accepted ”
12 }
13] ,
14 ”Attrs ” : [
15 {
16 ”Class ” : ” e x p l i c i t ” ,
17 ”Type ” : ” u s e r i d ” ,
18 ”Value ” : ”YXNheWxlcgA=”,
19 ”Echo ” : true ,
20 ” Status ” : ” accepted ” ,
21 ”ResValue ” : null
22 } ,
23 {
24 ”Class ” : ” e x p l i c i t ” ,
25 ”Type ” : ”psk ” ,
26 ”Value ” : null ,
27 ”Echo ” : false ,
28 ” Status ” : ” accepted ” ,
29 ”ResValue ” : null
30 } ,
31 {
32 ”Class ” : ” imp l i c i t ” ,
33 ”Type ” : ” i p s r c ” ,
34 ”Value ” : ”NzUuMTQ4LjExOC4yMTcA” ,
35 ”Echo ” : true ,
36 ” Status ” : ” ignored ” ,
37 ”ResValue ” : null
38 }
39]
40 }� �

Listing A.10: Get HTTP Response - Access Granted

Appendix B

libcustos Interface

� �
1 /∗ cus to s . h
2 ∗
3 ∗ c u s t o s c l i e n t i n t e r f a c e − C b ind ing s
4 ∗
5 ∗ By Andy Say l e r (www. andysay l e r . com)
6 ∗ I n i t i a l l y c rea t ed 05/13
7 ∗
8 ∗/
9

10 #ifndef CUSTOS CLIENT H
11 #define CUSTOS CLIENT H
12

13 #include <errno . h>
14 #include <i n t t ype s . h>
15 #include <s tdboo l . h>
16 #include <s t d i n t . h>
17 #include <s t d i o . h>
18 #include <s t d l i b . h>
19 #include <s t r i n g . h>
20

21 #include <uuid/uuid . h>
22 #include <j s on / j son . h>
23

24 #include ” cu s t o s h t tp . h”
25 #include ” cu s t o s j s o n . h”
26

27 #define CUS VERSION ”0.2−dev”
28

29 #define CUSTOS ENDPOINT GRP ”/grp”
30 #define CUSTOS ENDPOINT OBJ ”/ obj ”
31 #define CUSTOS ENDPOINT ADT ”/ audit ”
32 #define CUSTOS ENDPOINT ACS ”/ acs ”
33

34 #define CUSTOS QUERY AA ”aa”
35 #define CUSTOS QUERY CHK ”chk”
36 #define CUSTOS QUERY REV ” rev ”
37

38 typedef enum custosOp {
39 CUS OP OBJ CREATE = 0 ,
40 CUS OP OBJ DELETE,
41 CUS OP OBJ READ,
42 CUS OP OBJ UPDATE,
43 CUS OP OBJ MAX

97

44 } custosOp t ;
45

46 typedef enum custosResStatus {
47 CUS RESSTAT OKAY = 0 ,
48 CUS RESSTAT UGROUP,
49 CUS RESSTAT UOBJECT,
50 CUS RESSTAT ERROR,
51 CUS RESSTAT MAX
52 } cu s to sResS ta tu s t ;
53

54 #define CUS RESSTAT ACCEPTED STR ”okay”
55 #define CUS RESSTAT UGROUP STR ”unknown group”
56 #define CUS RESSTAT UOBJECT STR ”unknown object ”
57 #define CUS RESSTAT ERROR STR ” e r r o r ”
58

59 typedef enum cus to sAtt rSta tus {
60 CUS ATTRSTATACCEPTED = 0 ,
61 CUS ATTRSTAT DENIED,
62 CUS ATTRSTAT REQUIRED,
63 CUS ATTRSTAT OPTIONAL,
64 CUS ATTRSTAT IGNORED,
65 CUS ATTRSTATMAX
66 } cu s t o sAt t rS t a tu s t ;
67

68 #define CUS ATTRSTAT ACCEPTED STR ”accepted ”
69 #define CUS ATTRSTAT DENIED STR ”denied ”
70 #define CUS ATTRSTAT REQUIRED STR ” requ i r ed ”
71 #define CUS ATTRSTAT OPTIONAL STR ” opt i ona l ”
72 #define CUS ATTRSTAT IGNORED STR ” ignored ”
73

74 typedef enum custosKeyStatus {
75 CUS KEYSTAT ACCEPTED = 0 ,
76 CUS KEYSTAT DENIED,
77 CUS KEYSTATMAX
78 } custosKeyStatus t ;
79

80 #define CUS KEYSTAT ACCEPTED STR ”accepted ”
81 #define CUS KEYSTAT DENIED STR ”denied ”
82

83 typedef enum custosACSStatus t {
84 CUS ACSSTAT ACCEPTED = 0 ,
85 CUS ACSSTAT DENIED,
86 CUS AVSSTATMAX
87 }
88

89 #define CUS ACSSTAT ACCEPTED STR ”accepted ”
90 #define CUS ACSSTAT DENIED STR ”denied ”
91

92 typedef enum cus to sAt t rC la s s {
93 CUS ATTRCLASS IMPLICIT = 0 ,
94 CUS ATTRCLASS EXPLICIT,
95 CUS ATTRCLASS MAX
96 } cu s t o sAt t rC l a s s t ;
97

98 #define CUS ATTRCLASS IMPLICIT STR ” imp l i c i t ”
99 #define CUS ATTRCLASS EXPLICIT STR ” e x p l i c i t ”

100

101 typedef enum custosAttrType {

98

102 CUS ATTRTYPE EXP USR = 0 ,
103 CUS ATTRTYPE EXP PSK,
104 CUS ATTRTYPE EXP PSKSHA2,
105 CUS ATTRTYPE EXP PSHBCRPT,
106 CUS ATTRTYPE IMP SOURCEIP = 0 ,
107 CUS ATTRTYPE IMP USRAGENT,
108 CUS ATTRTYPE IMP AUTHTYPE,
109 CUS ATTRTYPE IMP AUTHVAL,
110 CUS ATTRTYPE IMP TIMEUTC,
111 CUS ATTRTYPE IMPMAX
112 } custosAttrType t ;
113

114 #define CUSATTRTYPEMAX CUS ATTRTYPE IMPMAX
115 #define CUS ATTRTYPE EXP USR STR ” u s e r i d ”
116 #define CUS ATTRTYPE EXP PSK STR ”psk”
117 #define CUS ATTRTYPE EXP PSKSHA2 STR ”psk sha256 ”
118 #define CUS ATTRTYPE EXP PSKBCRPT STR ”psk bcrypt ”
119 #define CUS ATTRTYPE IMP SOURCEIP STR ” i p s r c ”
120 #define CUS ATTRTYPE IMP USRAGENT STR ” use r agent ”
121 #define CUS ATTRTYPE IMP AUTHTYPE STR ”auth type ”
122 #define CUS ATTRTYPE IMP AUTHVAL STR ” auth va lue ”
123 #define CUS ATTRTYPE IMP TIMEUTC STR ” t ime utc ”
124

125 typedef enum custosObjPerm t {
126 CUS OBJPERM DELETE = 0 ,
127 CUS OBJPERM READ,
128 CUS OBJPERMUPDATE,
129 CUS OBJPERM AUDIT,
130 CUS OBJPERM CLEAN,
131 CUS OBJPERM ACSGET,
132 CUS OBJPERM ACSSET,
133 CUSOBJPERMMAX
134 }
135

136 #define CUS OBJPERM DELETE ” ob j d e l e t e ”
137 #define CUS OBJPERM READ ” ob j r ead ”
138 #define CUS OBJPERMUPDATE ”obj update ”
139 #define CUS OBJPERM AUDIT ” ob j aud i t ”
140 #define CUS OBJPERM CLEAN ” ob j c l e an ”
141 #define CUS OBJPERM ACSGET ” ob j a c s g e t ”
142 #define CUS OBJPERM ACSSET ” ob j a c s s e t ”
143

144 typedef struct cus to sAtt r {
145 cu s t o sAt t rC l a s s t c l a s s ;
146 custosAttrType t type ;
147 s i z e t s i z e ;
148 u i n t 8 t ∗ va l ;
149 } cu s t o sAt t r t ;
150

151 typedef struct custosAttrReq {
152 bool echo ;
153 cu s t o sAt t r t ∗ a t t r ;
154 } custosAttrReq t ;
155

156 typedef struct custosAttrRes {
157 cu s t o sAt t rS t a tu s t s t a tu s ;
158 bool echo ;
159 s i z e t r e s s i z e ;

99

160 u i n t 8 t ∗ r e s v a l ;
161 cu s t o sAt t r t ∗ a t t r ;
162 } cus to sAtt rRes t ;
163

164 typedef struct custosKey {
165 uu id t uuid ;
166 u in t 64 t r e v i s i o n ;
167 s i z e t s i z e ;
168 u i n t 8 t ∗ va l ;
169 } custosKey t ;
170

171 typedef struct custosKeyReq {
172 bool echo ;
173 custosKey t ∗ key ;
174 } custosKeyReq t ;
175

176 typedef struct custosKeyRes {
177 custosKeyStatus t s t a tu s ;
178 bool echo ;
179 custosKey t ∗ key ;
180 } custosKeyRes t ;
181

182 typedef struct custosObjACS {
183 s i z e t perm cnts [CUS OBJPERMMAX] ;
184 cu s t o sAt t r t ∗ perm vals [CUS OBJPERMMAX] ;
185 } custsObjACS t ;
186

187 typedef struct custosObjACSReq {
188 bool echo ;
189 custosObjACS t∗ acs ;
190 } custoObjACSReq t ;
191

192 typedef struct custosObjACSRes {
193 custosACSStatus t s t a tu s ;
194 bool echo ;
195 custosObjACS t∗ acs ;
196 } custoObjACSRes t ;
197

198 typedef struct custosReq {
199 char∗ t a r g e t ;
200 s i z e t num attrs ;
201 custosAttrReq t ∗ a t t r s ;
202 s i z e t num keys ;
203 custosKeyReq t ∗ keys ;
204 s i z e t num acss ;
205 custosObjACSReq t∗ ac s s ;
206 } custosReq t ;
207

208 typedef struct custosRes {
209 cu s to sResS ta tu s t s t a tu s ;
210 s i z e t num attrs ;
211 cus to sAtt rRes t ∗ a t t r s ;
212 s i z e t num keys ;
213 custosKeyRes t ∗ keys ;
214 s i z e t num acss ;
215 custosObjACSRes t∗ ac s s ;
216 } cus to sRes t ;
217

100

218

219 /∗ cu s t o sA t t r Functions ∗/
220 extern cu s t o sAt t r t ∗ cu s t o s c r e a t eAt t r (const cu s t o sAt t rC l a s s t c l a s s ,
221 const custosAttrType t type ,
222 const s i z e t s i z e , const u i n t 8 t ∗ va l) ;
223 extern int cu s t o s de s t r oyAt t r (cu s t o sAt t r t ∗∗ at t rp) ;
224 extern cu s t o sAt t r t ∗ cu s t o s dup l i c a t eAt t r (const cu s t o sAt t r t ∗ att r , bool echo) ;
225 extern int custos updateAtt r (cu s t o sAt t r t ∗ att r ,
226 const cu s t o sAt t rC l a s s t c l a s s ,
227 const custosAttrType t type ,
228 const s i z e t s i z e , const u i n t 8 t ∗ va l) ;
229

230 extern const char∗ cus tos Att rClas sToStr (const cu s t o sAt t rC l a s s t c l a s s) ;
231 extern cu s t o sAt t rC l a s s t cus tos St rToAttrClas s (const char∗ s t r) ;
232 extern const char∗ custos AttrTypeToStr (const cu s t o sAt t rC l a s s t c l a s s ,
233 const custosAttrType t type) ;
234 extern custosAttrType t custos StrToAttrType (const cu s t o sAt t rC l a s s t c l a s s ,
235 const char∗ s t r) ;
236

237 /∗ custosKey Functions ∗/
238 extern custosKey t ∗ cus to s c r ea teKey (const uu id t uuid ,
239 const u in t 64 t r ev i s i on ,
240 const s i z e t s i z e , const u i n t 8 t ∗ va l) ;
241 extern int custos dest royKey (custosKey t ∗∗ keyp) ;
242 extern custosKey t ∗ cus to s dup l i ca t eKey (const custosKey t ∗ key , bool echo) ;
243 extern int custos updateKey (custosKey t ∗ key ,
244 const uu id t uuid ,
245 const u in t 64 t r ev i s i on ,
246 const s i z e t s i z e , const u i n t 8 t ∗ va l) ;
247

248 /∗ custosObjACS Functions ∗/
249 extern custosObjACS t∗ custos createObjACS () ;
250 extern int custos destroyObjACS (custosObjACS t ∗∗ acsp) ;
251 extern custosObjACS t∗ custos dupl icateObjACS (const custosObjACS t∗ acs , bool echo) ;
252 extern int custos updateObjACSAppendAttr (custosObjACS t∗ acs ,
253 const custosObjPerm t perm ,
254 cu s t o sAt t r t ∗ a t t r) ;
255

256 extern const char∗ custos ObjPermToStr (const custosObjPerm t perm) ;
257 extern custosObjPerm t custos StrToObjPerm (const char∗ s t r) ;
258

259 /∗ cus tosAt trReq Functions ∗/
260 extern custosAttrReq t ∗ cus to s c r ea teAtt rReq (const bool echo) ;
261 extern int custos des t royAttrReq (custosAttrReq t ∗∗ a t t r r eqp) ;
262 extern int custos updateAttrReqAddAttr (custosAttrReq t ∗ at t r r eq ,
263 cu s t o sAt t r t ∗ a t t r) ;
264

265 /∗ custosKeyReq Functions ∗/
266 extern custosKeyReq t ∗ custos createKeyReq (const bool echo) ;
267 extern int custos destroyKeyReq (custosKeyReq t ∗∗ keyreqp) ;
268 extern int custos updateKeyReqAddKey (custosKeyReq t ∗ keyreq ,
269 custosKey t ∗ key) ;
270

271 /∗ custosObjACSReq Functions ∗/
272 extern custosObjACSReq t∗ custos createObjACSReq (const bool echo) ;
273 extern int custos destroyObjACSReq (custosObjACSReq t∗∗ acsreqp) ;
274 extern int custos updateObjACSReqAddACS (custosObjACSReq t∗ acsreq ,
275 custosObjACS t∗ acs) ;

101

276

277 /∗ cus tosAt t rRes Functions ∗/
278 extern cus to sAtt rRes t ∗ cu s to s c r ea t eAt t rRe s (const cu s t o sAt t rS t a tu s t s tatus ,
279 const bool echo ,
280 const s i z e t r e s s i z e ,
281 const u i n t 8 t ∗ r e s v a l u e) ;
282 extern int cus to s de s t royAtt rRes (cus to sAtt rRes t ∗∗ a t t r r e s p) ;
283 extern int custos updateAttrResAddAttr (cus to sAtt rRes t ∗ a t t r r e s ,
284 cu s t o sAt t r t ∗ a t t r) ;
285

286 extern const char∗ cus tos Att rStatusToStr (const cu s t o sAt t rS t a tu s t s t a tu s) ;
287 extern cu s t o sAt t rS t a tu s t cus tos St rToAttrStatus (const char∗ s t r) ;
288

289 /∗ custosKeyRes Functions ∗/
290 extern custosKeyRes t ∗ custos createKeyRes (const custosKeyStatus t s tatus ,
291 const bool echo) ;
292 extern int custos destroyKeyRes (custosKeyRes t ∗∗ keyresp) ;
293 extern int custos updateKeyResAddKey (custosKeyRes t ∗ keyres ,
294 custosKey t ∗ key) ;
295

296 extern const char∗ custos KeyStatusToStr (const custosKeyStatus t s t a tu s) ;
297 extern custosKeyStatus t custos StrToKeyStatus (const char∗ s t r) ;
298

299 /∗ custosObjACSRes Functions ∗/
300 extern custosKeyRes t ∗ custos createObjACSRes (const custosACSStatus t s tatus ,
301 const bool echo) ;
302 extern int custos destroyObjACSRes (custosObjACSRes t ∗∗ ac s r e sp) ;
303 extern int custos updateObjACSResAddACS (custosObjACSRes t∗ acs r e s ,
304 custosObjACS t∗ acs) ;
305

306 extern const char∗ custos ACSStatusToStr (const custosACSStatus t s t a tu s) ;
307 extern custosKeyStatus t custos StrToACSStatus (const char∗ s t r) ;
308

309 /∗ custosReq Functions ∗/
310 extern custosReq t ∗ cus to s c r ea t eReq (const char∗ t a r g e t) ;
311 extern int cus tos des t royReq (custosReq t ∗∗ reqp) ;
312 extern int custos updateReqAddAttrReq (custosReq t ∗ req ,
313 custosAttrReq t ∗ a t t r r e q) ;
314 extern int custos updateReqAddKeyReq (custosReq t ∗ req ,
315 custosKeyReq t ∗ keyreq) ;
316 extern int custos updateReqAddObjACSReq (custosReq t ∗ req ,
317 custosObjACSReq t∗ acs req) ;
318

319 /∗ custosRes Functions ∗/
320 extern cus to sRes t ∗ cus to s ge tRes (const custosReq t ∗ req ,
321 const custosOp t op ,
322 const uu id t group) ;
323 extern int cus to s de s t royRes (cus to sRes t ∗∗ re sp) ;
324

325 extern const char∗ custos ResStatusToStr (const cu s to sResS ta tu s t s t a tu s) ;
326 extern cu s to sResS ta tu s t custos StrToResStatus (const char∗ s t r) ;
327

328 /∗ JSON ∗/
329 extern j s o n ob j e c t ∗ custos AttrToJson (const cu s t o sAt t r t ∗ a t t r) ;
330 extern j s o n ob j e c t ∗ custos KeyToJson (const custosKey t ∗ key) ;
331 extern j s o n ob j e c t ∗ custos ObjACSToJson (const custosObjACS t∗ acs) ;
332

333 extern j s o n ob j e c t ∗ custos AttrReqToJson (const custosAttrReq t ∗ a t t r r e q) ;

102

334 extern j s o n ob j e c t ∗ custos KeyReqToJson (const custosKeyReq t ∗ keyreq) ;
335 extern j s o n ob j e c t ∗ custos ObjACSReqToJson (const custosObjACSReq t∗ acs req) ;
336

337 extern j s o n ob j e c t ∗ custos ReqToJson (const custosReq t ∗ req) ;
338

339 extern cu s t o sAt t r t ∗ custos JsonToAttr (j s o n ob j e c t ∗ a t t r j s o n) ;
340 extern custosKey t ∗ custos JsonToKey (j s o n ob j e c t ∗ keyjson) ;
341 extern custosObjACS t∗ custos JsonToObjACS (j s o n ob j e c t ∗ ac s j s on) ;
342

343 extern cus to sAtt rRes t ∗ custos JsonToAttrRes (j s o n ob j e c t ∗ a t t r r e s j s o n) ;
344 extern custosKeyRes t ∗ custos JsonToKeyRes (j s o n ob j e c t ∗ key r e s j s on) ;
345 extern custosObjACSRes t∗ custos JsonToObjACSRes (j s o n ob j e c t ∗ a c s r e s j s o n) ;
346

347 extern cus to sRes t ∗ custos JsonToRes (j s o n ob j e c t ∗ r e s j s o n) ;
348

349 #endif� �
Listing B.1: libcustos Client Header File

